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 Some formal guideposts for the analysis of R&D models of economic growth (preliminary notes) 

 

In what follows we build a framework which embeds different views of the relation between output 

growth and the generation of new inputs, as may be encountered in R&D growth models. This is done under 

a number of simplifying assumptions about technology that still enable us to discuss usually neglected 

issues, such as the role of complementarities and the relation between technological compatibility and 

knowledge spillovers. The main simplifying assumption is that the service characteristics of final output Y 

are unchanged throughout, that Y can be either consumed or accumulated in the form of capital and that it is 

produced by means of intermediate goods and labour. The set of available intermediate goods Qt changes 

through time as a result of innovation activities. 

Assume the number of service-characteristics types that exist in nature is fin ite. An  intermediate 

good is a couple (v, q) ∈ Ζ+
2. v is the intermediate-good variety, which identifies a class of functions 

performed by (v, q), that is, a composition of the associated flow of service characteristics. For instance, a 

particular oil may serve mainly as a propeller, but partly also as a lubricant. The number of varieties at t is Nt.   

q is the technological level, or generation, to which (v,  q) belongs. In principle, we should expect that q has 

only an ordinal meaning, possibly with the further ordinal implication that later generations of a variety are 

also more productive. This is not, however, the interpretation we find in the new-growth literature, where the 

q’s cease to be simply  indexes of novelty, to become indexes leading to a cardinal productivity measure. As 

we shall see in a moment, the trick is that of assuming that each generation q of any variety v has a well 

defined productivity effect; for instance that the marginal product of (v, q) is a known time-invariant function 

of Aq (and possibly other variables), where A > 1. This leads to a time invariant production possibility 

frontier, describing the productive potential of every possible present and future combination of intermediate 

goods.  

There are two types of production activities in the economy. {D}t is the set of activities in existence 

at t for producing y by means of intermediate inputs and labour; these activities are performed by perfectly 

competitive firms. This is consistent with the assumption that for the individual firm final-good production is 

subject to constant returns to scale.{B}t is the set of activities in existence at t for producing intermediate 

goods by means of the final good, accumulated in the form of capital. Intermediate goods are differentiated 

and are produced by local monopolists. There are also invention activities, that will be formalised later on. 

The reason why firms in the intermediate-good sector can not be perfectly competitive is quite robust (Arrow 

(1987) and (1998), Romer (1990)). The right to produce a new intermediate good involves an innovation cost 

that represents a fixed cost, because once the knowledge to produce a unit of a new good is acquired, it can 



be applied to the production of an indefinite number of units. If intermediate-good production is otherwise 

subject to constant variable costs, we are faced with a clear case of increasing returns. 

D(t) is a an activity available at time t for producing the final good. The inputs of activity D(t) form a 

list (L D(t),,X D(t)), where L A(t) is the labour input, and X D(t) is the vector [x1, q(1), …, xN(t), q(N(t))] of the 

intermediate-goods quantities that participate in the production of y, according to Dt. Our notation is justified 

by a set of assumptions implying that if Dt uses the variety v, then it uses only a well defined technology 

level q(v) which is best-practice at t. Every activity D can be operated at a changing scale of operation aD , 

under constant returns to scale and with the understanding that the unit scale of operation is such that LD = 1. 

The output from the operation of D at scale a is YD(a).  

The input of the B activity for producing one unit of (v,q) is a quantity of  capital K which depends 

positively on the technology level qv. To fix our ideas, we may follow Aghion and Howitt ((1998), chapter 

12) by assuming that K units of capital invested in the production of good (v, q) give rise to K/Aqµ units of 

this good, thus implying that more capital intensive methods are required to produce intermediate goods of a 

later generation. µ measures the sensitivity of production cost to a technological upgrade. For the sake of 

later reference we write: 

Kv,q = xv,q A
qµ          (1) 

Howitt (1999) adopts a similar increasing-capital-intensity assumption and claims that capital used in 

intermediate-good production can be interpreted as human capital. The above specification implies that  the 

average and marginal cost, in terms of final output, of producing (v, q) is rAqµ , where r is the rental price of 

capital. Since we abstract from depreciation, r is also the rate of interest. 

 

An ‘extensive’ innovation is the introduction of a new variety v of initial technology level index any 

quality. An intensive innovation is the introduction of a subsequent generation q of an existing variety. Both 

kinds of innovation give rise to a new intermediate good (v,q), to the new activity producing it and to the 

new activities using (v,q), together with labour, and possibly other existing intermediate goods, as an input. 

Innovation is the non deterministic outcome of the research activity R performed by an economic agent i. 

The inputs of this activity are material and immaterial; the former represented by LR, KR, XR, the latter by the 

knowledge base of agent i, namely the set of goods Qi of which i is knowledgeable. 

 

2.1 Production activities 

Even granting that the ordinal measure q is transformed in a cardinal productivity index, we should 

in general expect that the flow of service characteristics associated with (v, q) depends upon the type and 

quantity of other intermediate goods with which (v, q) co-operates within a production activity1. If there are 

strong complementarities between different intermediate goods, it may be the case that the best-practice 

technology level q of variety v at t may not be the last generation of v. Compatibility constraints may in fact 

                                                             
1 If there are production externalities, this service flow may also depend upon the intermediate inputs participating in 
other production activities. 



imply that it is inefficient to use in the same activity very distant technology levels of complementary 

varieties. Complementarities of his sort are simply ruled out in the R&D growth models. 

As in standard microeconomic theory, the complementarity/substitutability relations between 

intermediate goods can be defined from the properties of the frontier of the production possibility set at time 

t, as synthesised by the production function Y = F(L,t , Xt). R&D growth models assume a particular 

substitutability relation between intermediate goods, to the effect that they enter the production function in 

the additively separable form: 

 Yt = a Nt
γ Ly,t

1 − α [
v

tN
=∑ 1 q

v tS
=∑ 1

, v
qA β

 xv,q
α] 

where a is a constant, Sv,t is the latest generation of variety v at t. Thus, the marginal product of an 

intermediate good (q,v) is independent of the inputs of the other intermediate goods, although it may depend, 

if γ ≠ 0 , on the total number of intermediate goods potentially cooperating with (q,v). 

Since the last generation of a variety is equivalent to Aα /β units of the previous generation, the price 

of the latter can not be higher than 1/Aα /β times the price of the former. Profit maximisation by the 

monopolist producing the last generation of v leads to a monopoly price2 pt(Sv,t) = 
tr A v tS ,

µα−1
; thus the 

price at t of the last-but-one generation of v is pt(Sv,t − 1) ≤ 
tr A v tS ,

/µ β αα− −1
against a marginal production 

cost 
tr A v tS(

,
)−1 µ

. Thus, the last-but-one or any older generation of v is not produced provided that 

µ β αα− − </A 1
1. Since α < 1, a sufficient condition is  β > αµ with A sufficiently large. Assuming that this 

holds true, the production function can be simplified to obtain: 

 Yt = a Nt
γ Ly,t

1 − α [
v

tN
=∑ 1

v t
qA ,

β
 xv

α]         (2) 

where qv, t = Sv, t and xv is the quantity of the intermediate good (v, qv, t). 

The monopoly output xv, t of variety v is: 

xv, t = a1 /(1 − α)α2 /(1 − α) Nt
γ / (1 − α) Ly,t rt

1 / (α − 1)[ v t
qA ,

( )/( )β µ α− −1
]      (3) 

Aghion and Howitt ((1998), chap. 12) obtain a monopoly output which is uniform across varieties 

and independent of q, by imposing the special assumption β = µ. The more plausible restriction β > µ makes 

monopoly output positively related to the technological advance qv,t. 

Substitution of (3) into (2) yields:  

Yt = aα/(1 − α)α2 α/(1 − α) Ly,t rt
α / (α − 1) Nt

(1 − α + γ) / (1 − α) [(1/ Nt) v
tN

=∑ 1 Aq
tv

)1/()(
,

ααµβ −−
]   

 (4) 

                                                             
2 We may notice, in passing, that the pricing of last-generation varieties is uniform, provided that they share the same 
technology level; moreover, should we abstract from the influence of q on the intermediate-good-sector technology 
(µ=0), the pricing of the last-generation varieties is uniform and independent of their technology level. This is the 
assumption we find in Barro and Sala I-Martin (1995), chapter 7. 



Let qt = 
v

tN
=∑ 1

 qv,t. Realism would require that the distribution of (qv,t / qt) be non uniform, and have 

a bounded or indefinitely increasing support, depending on the incentive to engage in intensive R&D in the 

relatively ‘backward’ or ‘advanced’ sectors and on the factors shaping the technology level of a new variety. 

We shall discuss below the different forces that are involved here. A convenient, if quite special case, arises 

when the probability distribution of a quality-innovation success is uniform across v and the technology level 

of a new variety is qt. With this situation in mind, it is useful to write (4) in the following form: 

 

Yt = aα/(1 − α)α2 α/(1 − α) hL L,t rt
α / (α − 1) Nt

(1 − α + γ) / (1 − α) ⋅ 

Mt
(β − αµ) / (1 − α) [(1/ Nt) v

tN
=∑ 1

 Mv, t
(β − αµ) / (1 − α) / M t

(β − αµ) / (1 − α)]    (4.1) 

Where hL is the share of labour in the final-good sector, Mt ≡ Aq
t , Mv, t ≡ Aq

tv ,  and the term in square 

brackets is easily shown to be constant through time and independent of Nt under the assumptions referred to 

above (see appendix A.1). 

It is then clear how the assumption γ = α − 1 (see, for instance, Aghion and Howitt (1998), chapter 

12) sterilises the effects of the growing number of varieties on final output, which result from the additively 

separable way in which the single varieties enter the production function. Where these effects are not 

sterilised, because  (1 − α + γ) > 0, we observe that the production function corresponding to a constant 

technology level contains a form of increasing returns due to specialisation, as measured by N. The best 

known example along these lines is probably Romer (1990), which assumes γ = 0. 

In every sector v the expected proportional change per unit of time of the term Mv, t is the 

proportional change in this term due to an innovation success times the probability P t of an innovation arrival 

in period t3. Since the proportionate change of Mv, t due to an innovation success is [A− 1]  and P t is assumed 

to be uniform across v we obtain: 

E(∆Mv, t / Mv, t) = E(∆Mt / Mt) = Pt [A − 1]        (5) 

If the number of varieties Nt is sufficiently large Mt has a deterministic time rate of change gM (t) equal to the 

right-hand side of (4).  

Recalling that in steady state the rate of interest is constant, equation (4.1) yields the steady-state-

growth approximation: 

gY = gL + [(1 − α + γ)/(1 − α)] gN. + [(β − αµ)/(1 − α)]gM      (6) 

where gi is the proportional rate of change of variable i in a unit time interval4. In particular, if following 

Romer (1990) we impose the restrictions γ = 0 and gM = 0 , the above relation boils down to gy = gL + gN , 

where it is apparent that the growth rate of per-capita output is simply the growth rate in the number of 

specialised varieties. 

                                                             
3 Cf. Barro and Sala I-Martin (1995), p. 252. 
4 The relation holds strictly in continuous time. 



The same steady-state-growth equation is obtained by considering the fictitious economy where the 

technology level qv,t of each variety v equals the average technology level of the real economy qt. The main 

difference between the real and the fictitious economy is that in the former, but not in the latter, the 

proportional time rate of change of quality advance in every single sector is stochastic, with an expected 

value equal to the deterministic value we observe in the fictitious economy.  

 In the fictitious economy monopoly output is uniform across varieties (xv, t = xt) and final output can 

be expressed: 

Yt = a Nt
γ Ly,t

1 − α Nt t
qA β

 xt
α 

If hK is the capital share employed in the production, as opposed to the innovation, activities, it must be the 

case that, in equilibrium hK, t Kt / t
qA

µ
 = Nt xt. On the symmetric-equilibrium path of the fictitious economy 

final output is then: 

Yt = a Nt
γ (hL, t Lt)

 1 − α Nt
1 − α Mt

(β − αµ) (hK, t Kt)
α         (7) 

This yields the steady-state approximation (6), because the shares hL and hK are constant on a steady-state 

path. 

 

2.3 Intensive innovations 

The argument above rests on the assumption that the probability of an innovation arrival is uniform 

across varieties. It is now time to discuss the plausibility of the assumption. The probability Pv, q that in a 

given period an intensive-innovation success occurs in sector v with technology level q depends on the rival 

and non rival resources invested in R&D in sector v and on the complexity of the search effort. The rival 

resources are represented by Kv and Lv , the non-rival ones by the sector specific knowledge stock and the 

general knowledge stock made available by technological advances in other sectors. 

The drastic simplification we find in the literature is that these knowledge stocks can be conceived as 

scalar multiples of homogeneous magnitudes; in particular, they can be measured by the sector technology 

level qv and the average technology level q, respectively. Thus, the same hyper-simplified framework used to 

measure the contribution of knowledge to final output production is transferred to evaluate the contribution 

of knowledge to the production of knowledge. We shall not dwell here on the potential dangers of this hyper-

simplification. More concretely, we shall insist, here and in later sections, on the directions in which the 

framework should be expanded, in order that some basic phenomena, such as the relation between innovation 

and the difficulty of search, or knowledge obsolescence, or the complementarity between sector specific 

knowledge stocks, can be brought within the scope of the theory. For the time being, we resort to the 

following specification of the determinants of Pv, q. 

Pv, q = λQ φ( uL, v  L, uK, v  K, Mv, M) = λQ (uL, v L)θ (uK, v  K)ξMv
χ [Mϕ / Mv

ϕω]    (8) 

where ξ > 0, θ > 0, λQ is a constant, uL, v ,  uK, v are the fractions of total labour and capital invested in 

intensive R&D on variety v. The returns of the R&D activity with respect to rival-resource investment are 



constant or decreasing, depending on θ + ξ = 1 or θ + ξ < 1. The second case arises if there is a congestion 

effect on the returns to R&D investment (Stokey (1995), Howitt (1999)). 

It may be worth observing that uv L can be interpreted as a quantity of human capital in the sense that 

uv includes the fraction of time spent for attaining and maintaining qualification. This interpretation of the 

above formalism requires that the depreciation rate of human capital is close to 1, perhaps as a result of 

knowledge obsolescence. 

The parameter χ is meant to capture how the arrival probability is affected by sector-specific 

knowledge for reasons independent of cross-sector (horizontal) knowledge spill-overs. The sign of χ is 

highly controversial, because there are at least three different ways in which  qv may affect the success 

probability Pv,  q. Equation (3) suggests how a relatively large qv, hence Mv, multiplies the benefit of an 

innovation success over a relatively large scale of monopoly output (Barro and Sala I-Martin (1995), chapter 

7). This channel of influence makes research investment in the advanced sectors more profitable, the 

equilibrium value of uv positively correlated with Mv and the probability that a technology advance occurs in 

a relatively advanced sector higher.  

A powerful influence acting in the opposite direction arises if more advanced technology levels are 

progressively more difficult to discover as a result of the increasing complexity of the search activity. This is 

the assumption we find in a number of search-theoretic models of R&D-based economic growth (Jovanovic 

and Rob (1990), Stokey (1995), Kortum (1997))5. Realistic as it may be, the assumption does not find a 

theoretical justification within a formal framework which postulates a fixed search space with a fixed (and 

indeed very simple) local structure. The feed-back of innovations on the complexity of the local search space  

is therefore beyond the reach of these model and must be imported from the outside, as an exogenous fact. 

There is eventually the “standing on giants’ shoulders’ effect”6 (Caballero and Jaffe (1993)) which may act 

within a sector. The hypothesis is here that, abstracting from cross-sector spill-overs, a higher sector-specific 

knowledge facilitates discovery. It should be observed how an effect of this kind is already captured by the 

very notion of a ‘quality ladder’ (Grossman and Helpman (1991)). In the present framework, this is reflected 

in the assumption that the innovation with arrival probability Pv, q shifts the best-practice technology level 

from qv to qv + 1. Thus, the probability that qv + 1 is discovered is zero if the starting technology level is 

lower than qv. Moreover, since the productivity parameter is Mv, t ≡ Aq
tv , , the idea of a quality-ladder 

amounts to an intertemporal spill-over, to the effect that a quality innovation now increases the productivity 

gain associated with future innovations. The question is therefore about the grounds for including, on this 

account, a further positive influence of qv on Pv, q.  

The above issue must be distinguished from the effect that sector-specific knowledge may have on 

the sign and strength of cross-sector knowledge externalities, or aggregate “giants’ shoulders effect”. These 

effects are captured by the parameters ϕ and ω. The hypothesis is that intensive R&D in a sector is exposed 

                                                             
5 In view of their rather special structure, Aghion and Howitt (1998) and Howitt (1999) refer this complexity-of-search 
effect to the maximum technology level in the economy, rather than to the sector-specific qv. 
6 Newton … 



to positive or negative externalities, depending on the relatively backward or advanced technological 

position of the sector. If the externalities are positive (M > Mv), they can be simply interpreted as cross-

sector knowledge spill-overs; if they are negative (M < Mv), they may arise from the inertia that a backward 

technological environment exerts on the pace of progress, or from problems of technological incompatibility. 

This leads to ϕ > 0. The parameter ω > 0 measures the relative strength of positive and negative externalities, 

with ω = 1 referring to a situation of equal strength, so that the effect vanishes for a sector with average 

technology level q (for an equivalent assumption, see Peretto (1998)). It may be also worth observing that  

the above restrictions disregard that being too backward may sometimes inhibit from the possibility of taking 

advantage of knowledge spillovers7.  

Expression (8) is equivalently written as follows: 

Pv, q = λQ (uL, v  L)θ (uK, v  K)ξ Mv
χ − ωϕ Mϕ         (8’) 

 

It is of course very difficult to assess the relative weight of the different channels of influence of qv 

on Pv, q and therefore the sign of χ and of χ − ωϕ. In models where the different effects of the sector specific 

qv on R&D productivity exactly cancel out (for instance, Barro and Sala I-Martin (1995), chapter 7 assumes 

χ = 0, ϕ = 0) the arrival probability Pv, q is independent of qv. This implies that the arrival probability is 

uniform across sectors in the presence of a uniform distribution of labour invested in research. Referring for 

simplicity to growth paths with a constant interest rate, we obtain that the gross expected return on R&D 

investment is r + Pv, q, where Pv, q can be also interpreted as the premium for the probability that the flow of 

monopoly profit associated with the innovation stops in finite time (see appendix A.2). Thus the rate of 

return on R&D investment is uniform across sectors when the distribution of R&D labour, and therefore the 

arrival probability Pv, q is also uniform. Still, since innovation arrival in every single sector is stochastic, the 

support of the relative technology-level distribution qv  t / qt grows with time, because the sectors where the 

realization of technology arrival has been relatively slow face the same arrival probability Pv, q faced by the 

relatively advanced sectors. 

If instead χ − ωϕ < 0, the relatively backward sectors have a tendency to catch up (in terms of 

technology level) with the relatively advanced ones (see appendix A.2). In each sector, the ratio qv t / qt 

converges to 1 and the real economy converges to the fictitious economy where qv = q and intensive R&D 

investment is uniform across varieties every date t. As will be shown, the situation is consistent with a 

sustained growth of the average technology level qt provided that ω < 1 (positive cross-sector externalities 

stronger than negative cross sector externalities).  

 

2.4 Extensive innovations 

On the assumption that there is an external effect such that the technical knowledge in the economy 

affects the technology level of a new variety, a-not-too-unplausible assumption is that if (v, qv) is a new 

variety born at t, then qv is stochastic, with distribution determined by the cross-sector distribution of q at t 

                                                             
7 To include this possibility, it should be allowed that the sign of ω may depend on M / Mv.  



(Howitt (1999)). For the sake of simplicity, we shall assume instead that the technology level of a new 

variety born at t is qt (Peretto (1998)). The hypothesis brings in a certain symmetry between extensive and 

intensive innovations, in that for both of them the technology level of the new intermediate good produced 

by the innovation is deterministic. Moreover, extensive innovations, as it happens for the intensive ones, face 

some risk of being displaced by a future quality improvement. In steady-state equilibrium, the gross rate of 

return on the extensive innovation (v, q) is r + Pv, q, where the second term is the risk premium demanded to 

compensate for the probability that a future innovation (v, q + 1) displaces the intermediate good (v, q). In 

fact, if Pv, q does not depend on q (because χ = 0) and is uniform across v, then all innovations, no matter 

whether intensive or extensive, face the same risk of being displaced in the future. 

Our simplifying hypothesis on the technology level of a new variety does not eliminate the 

uncertainty about the success or failure of the individual extensive R&D investment in a given time period. 

In the economy as a whole, the number of extensive innovations in a given period is still random, and their 

expected number is here expressed as: 

∆N = λN (zL L) ε(zK K) ψNτMν           (9) 

where λN  is a constant, zL and zK are the fractions of total labour and capital employed in extensive R&D; 

again, zL includes the fraction of labour time invested in qualification. We impose the restrictions ε > 0 and ψ 

> 0, with ε + ψ < 1 indicating that there is a congestion effect on the productivity of research. A positive τ 

bears the interpretation that a higher number of varieties amounts to a wider knowledge base in the economy 

as a whole and therefore facilitates the discovery of yet new varieties. If this is in itself quite plausible, far 

more questionable appear to be ‘point restrictions’ such as τ = 1, or τ = 0,  as may be found, for instance, in 

the pure variety-extension model of Romer (1990) and in Peretto (1998), respectively. It may be also worth 

observing that the condition ν = 0 can be interpreted in the sense that the spill-over from the average quality 

q (hence, the average productivity parameter M) is just sufficient to make sure that the new varieties are of 

average quality, and there is no further spill-over effect from q (Peretto (1998)). ν < 0 would instead indicate 

that the cost (in terms of rival resources invested in extensive R&D) of producing a given innovation flow 

∆N with average technology level q is increasing in q.  

 

2.5 Steady-growth equations 

For the sake of simplicity we refer below to the symmetric equilibrium where qv = q and Mv = M. We 

have shown that if χ − ωϕ < 0 the economy has a tendency to converge to such equilibria. Thus, our 

simplification amounts to the hypothesis that convergence has already taken place. It has been also shown 

that if χ − ωϕ  =  0 the output-growth properties of the fictitious economy with Mv = M are descriptive of the 

growth properties of the real economy under the restriction that the rate of interest is constant. 

For the sake of later reference, we introduce the notion of a constant-growth path as defined by 

following properties: (i) all the variables, including the factor employment shares, grow at a constant rate, 

possibly equal to zero; (ii) the capital output ratio K/Y is constant. A steady state, or balanced-growth path, is 

a particular constant-growth path such that the growth rate of every variable is constant for ever. Since the 



factors employment shares can not exit the interval [0, 1], the definition immediately implies that the growth 

rate of such variables is zero on a balanced path. The reason for introducing the notion of a constant-growth 

path is related to a number of stylised facts on economic growth in the advanced countries over the last one 

hundred years. In particular, the dramatic rise in the labour’s share employed in research is prima facie 

inconsistent with the properties of a steady-state path, but may fit those of a constant-growth path (Jones 

(2000)). 

On a symmetric-equilibrium path equations (5) and (8’) yield: 

∆M  = [A − 1] λQ (uL L/N)θ (uK K/N)ξ M 1 + χ + ϕ(1 − ω)       (10) 

where uL and uK are the aggregate labour and capital shares invested in intensive R&D in the N sectors. 

As discussed in Appendix A.3, most models of endogenous growth with intensive R&D introduce 

ad-hoc assumptions that, when translated in terms of our notation, amount to the very special case: χ + ϕ(1 − 

ω) = 0 and ξ = 0 (see, for instance, Grossman and Helpman (1991), Aghion and Howitt (1992), Howitt 

(1999), Peretto (1998), Young (1998), Barro and Sala I-Martin (1995), chapter 7). This implies that ∆M / M  

= [A − 1] λQ (uL L/N)θ. In particular, in the models where N is constant, it is assumed that L is also constant. 

If instead, the number of varieties grows simultaneously with the technology level, special assumptions (to 

be considered below) make sure that L/N is constant at least in steady state (Howitt (1999), Peretto (1998), 

Young (1998)). In either case, the steady-state growth rate of M is positive provided that a positive labour 

share uL is permanently invested in intensive R&D8. Indeed, the balanced-growth rate g*M is then an 

increasing function of the steady-state proportion u*L which depends on preferences. We shall see below 

how χ + ϕ(1 − ω) = 0 is necessary to the last result, which, in the light of our discussion in section 2.3, can 

be regarded as the outcome of a prohibitively special restriction.  

On a constant-growth path ∆M and M grow at the same rate; thus, on the assumption that χ+ϕ(1−ω) 

≠ 0, equation (10) implies that on a constant-growth path: 

g
M

[− χ − ϕ(1 − ω)] = [θ (n + g
u L

) + ξ ( g
uK

+ g
K

) − (ξ + θ) g
N

]     (11) 

The corresponding expressions for gY = gK and gN are as follows: 

g
K

 (1 − α) =  (γ + 1 − α) g
N

 + (1 − α) (n + g
hL

) + α g
hK

+ (β − αµ) g
M

   (12) 

g
N

(1 − τ) = ε (n + g
zL

) + ψ  ( g
z K

+ g
K

) + ν g
M

      (13) 

In a resource-full-employment equilibrium the growth rates of the factor shares are constrained by 

the equlibrium condition hi + zi + ui = 1 for i = K, L. In particular, on a balanced-growth path the growth 

rates of the factor shares are all zero, so that system (11), (12), (13) can be specialised as follows: 

 

g
M

[− χ − ϕ(1 − ω)] + (ξ + θ) g
N

− ξ g
K

 = θ n         (14) 

                                                             
8 This may well be the case even if there is a congestion effect in research so that 0 < θ < 1 (Howitt (1999)). 



−ν g
M

+ (1 − τ) g
N

 −  ψ g
K

 = ε n         (15) 

−(β − αµ) g
M

−  (γ + 1 − α) g
N

 + g
K

 (1 − α) =  (1 − α) n     (16) 

 

If we define the variables k ≡ K/N, l ≡ L/N, so that gK = gk + gN , n = gl + gN , (14) – (15) – (16) yield 

the following system: 

















+−−
−−

−−−−

á-1á)-1(ã-áì)(â

ø-ø-å-ô1í

î0ù)(1÷ ϕ



















g
g
g

k

N

M

 = 



















− g
g
g

l

l

l

)á1(

å

è

      (17) 

 

Let [I − Γ] be the square matrix in the left-hand-side of (17). We obtain the following proposition 

which extends to the economy with expanding varieties and technology levels a result, similar in spirit, in 

Eicher and Turnovsky (1999). 

 

Proposition 2.1: Assume Γ ≥ 0 and Trace ([I − Γ]) > 0. Assume also that, for each row, the row sum of the 
elements of Γ is positive and lower than 1. Then, for every n > 0, there exist positive values gM, gN, gK that 
are solutions to (14)-(15)-(16) and such that gl = n − gN > 0. 
 
Proof: see appendix A.2. 

 

A quick look at equation (16) will suffice to see that the following holds: 

 
Proposition 2.2: If, in addition to the assumptions of proposition 2.1, either or both elements (β − αµ) and 
(γ + 1 − α) in the third row of  Γ are positive, then gK > n (positive per-capita-output growth). 
 
 
Remark 2.1: The if condition of proposition 2.2 amounts to the existence of increasing returns to 
scale in the output sector. Proposition 2.1 requires instead that there are decreasing returns to scale 
in extensive search and is consistent with decreasing, constant or increasing returns in intensive 
search. In particular , the growth of  the productivity index M will be faster than population growth, 
provided that θ is sufficiently large. 

 

We have reached the remarkable conclusion that under the conditions of proposition 2.1 the steady-

state growth rates of output, technology levels and varieties are completely determined by the exogenous 

population growth and technological parameters. They are therefore independent of preferences, and of 

savings rates in particular. The reason why the same conclusion fails to hold in many R&D models of 

endogenous growth is that they assume ad-hoc conditions which make sure that the coefficients of equations 

(14) and (15) are linearly dependent, hence that the determinant of [I − Γ] is zero (see Appendix A.3). It may 

be worth observing how this amounts to a choice of parameters which has measure zero in the relevant 

parameter space. If the conditions imposed by proposition 2.1 are certainly less restrictive, it may not follow 



that they are economically realistic. In particular, it is required that χ + ϕ(1 − ω) < 0. Thus, recalling our 

discussion in section 2.2 and the economic interpretation of the parameters χ, ϕ and ω, we may 

observe how this condition amounts to the fact that the real economy does indeed converge to the 

situation in which the technology level is uniform across sectors, because the relatively backward 

sectors improve faster than the relatively advanced ones. This may be either because χ < 0 and ω is 

sufficiently close to 1, or because χ > 0 and ω is sufficiently larger than 1.  

 

 


