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1 Introduction

The linear growth model, which became prominent as the ”AK model” with Rebelo [27],
has rightly been dubbed “the simplest endogenous growth model” ([5, p. 38 ] (see also
pp. 39-42 and 141-4 in the same book). Its characteristic feature is that there is only
one commodity, whose production function has the form Y = AK, where Y is the output
and K is the input, both consisting of quantities of the same commodity, and A is a
positive constant reflecting the level of technological knowledge. With a capital good that
is produced by itself, unbounded paths of production become feasible.

In this paper we generalize the AK model to the case of any (finite) number of com-
modities, assuming in accordance with the general thrust of the original model that all
inputs are themselves producible. Moreover, we shall adopt the standard assumption in
much of the modern literature on endogenous growth that there is an immortal represen-
tative agent who is concerned with maximizing an intertemporal utility function over an
infinite time horizon. More precisely, it is assumed that the agent’s instantaneous util-
ity is actualized at a constant discount rate and is a function of the consumption of a
single commodity with a constant elasticity of substitution between present and future
consumption. Hence there are a number of capital goods but only one consumption good.

Rebelo [27] considered also a model in which the consumption good is produced
by scarce resources and a capital good which is selfreproduced: if the factors available
in fixed supply can be continuously and completely substituted, then the supply of the
consumption good can be expanded indefinitely. In this paper we ignore scarce resources.
And we do so not only in the sense that all commodities are technologically producible, but
also in the sense that the amounts of commodities available at time zero are either positive
or, if at time zero the amount of some commodity is zero, the parameters concerning
consumption preferences are in ranges in which the long period consumption plans are
not constrained by the non existence of such a commodity. We will refer to this condition
as ”full reproducibility”. We also say that ”scarcity does not enter in an essential way”.

The AK model has been chosen since it is simple and yet can be said to convey one of
the main messages of the new growth models: if there are a number of commodities which
can reproduce themselves, with no contribution from other resources, then the growth
process can be sustained even without technical progress. However, the reproducibility
assumption has the far reaching implication that strict concavity is not a generic property
of the model. Moreover, the fact that the smoothness property is strongly limited both
with respect to production and with respect to consumption has also revealed a number
of interesting properties of the model. With limited smoothness the “corner solution” is
the rule rather than the exception. This enables us to clarify some aspects of the theory
which are otherwise hidden.

As in the von Neumann model [24] the rule of free goods has been introduced; however
the simple introduction of the rule of free goods with continuous time would have implied
an infinite speed of disposal: we are faced here with the simple fact that disposal requires
time. From an economic point of view it would be desirable to use a model that allows
for lags in the relation of outputs to inputs in continuous time. But this would have
transformed the model so much that its relationship with the literature would have been
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very restricted. The solution we use in this paper is the introduction of a finite rate
of depreciation of commodities when they are disposed of, not lower than the rate of
depreciation of the same commodities when they are used in production. Hence a more
appropriate name would be that of “rule of free services of goods”. Clearly there is no
need for a rule of free goods if there exists only one commodity.

These remarks give incidentally some indications how this paper is connected also
to the von Neumann growth model and to the literature which developed in the sixties
on Turnpike Theorems (for a survey, see [34, Chapter 7], see also [22]). This is not sur-
prising since the AK model could be dated back decades before [27]: see, for example,
the discussion in [34, Section 5.D.b]. In particular, when we study the steady states of
the model we can recognize many properties known since the sixties or the seventies.
The main differences from the von Neumann model itself are that here we do not allow
joint production and, on the contrary, we allow consumption. But that literature studied
these conditions too. Conversely, the main difference from the literature developed in the
seventies on the Ramsey model consists in the fact that in the present model, as in the
von Neumann model, no restrictions on growth come from constraints on the availability
of ”natural” factors; that is the model is not bounded.

The model is studied as an optimal control problem in R
n with (2n+ 1) linear state-

control constraints. Such a high number of constraints gives rise to non-smoothness in
the problem; more precisely, the current value Hamiltonian has a component which is not
a smooth function on the set of feasible data (see Section 4 for details). Moreover, since
we are dealing with an unbounded growth model, we are naturally driven to consider
unbounded consumption-production strategies, which creates a lack of compactness in
the problem making it technically more difficult. As far as we know, models of the type
under consideration are not treated in the mathematical literature on optimal control (e.g.
[28, 29] treat general constraints but assume bounded strategies, and similarly [32], while
[4] treats unbounded strategies but different types of constraints, and so on). Thus we
were forced to study the problem from the beginning, trying to adapt the main methods
of optimal control theory (Dynamic Programming , see e.g. [6], and Maximum Principle,
see e.g. [26]) to our case. We stress the fact that to get our optimality conditions and to
deduce from them the main features of the optimal trajectories we need to combine the
two approaches above in an original way.

To be more precise, in this paper we provide:

• an existence result for optimal strategies;

• a set of necessary conditions and one of sufficient conditions;

• an analysis of the steady states of the model, with a complete classification of the
steady states involving full reproducibility.

These results are proved under some restrictions (explained in Subsection 2.3) that
we introduce to deal both with the complexity and the economic interpretation of the
model. A full dynamic analysis of the model forms part of some further research.

Since we do not deal with the stability of the equilibrium paths, the long section
on the classification of the steady states requires some further motivation, which will be
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provided at the very beginning of Section 6. Here it suffices to remark that steady states
allow one to study the static and comparative static properties of the model. Moreover,
when there is full reproducibility our duality results allow us to endow these states with
stationary relative prices and therefore to define the ”real rate of profit” associated with
steady growth paths. One result is that steady states exist under the same conditions that
yield existence of optimal strategies. Another is that three different types of steady states
are envisaged. They depend on the size of the discount rate. Subsection 6.5 is devoted to
providing an interpretation of these results. (When there is not full reproducibility, other
optimal steady states can be found, but they are not price supported: two examples are
provided in Appendix D.)

The main technical point to address has been the proof of necessary and sufficient
optimality conditions. To prove them here we combine the two main tools for treating
optimal control problems: the Maximum Principle and the Dynamic Programming (see
Section 5). For the reader’s convenience the main technical points are concentrated in the
appendices that can all be skipped at a first reading. The main difficulty in dealing with
the steady states has been related to the fact that whereas steady states are defined as
equilibrium paths in which consumption and process intensities grow at a common rate,
the stocks of available commodities do not need to grow at that rate (although the stocks
of commodities with a positive price need to do so).

The content of the paper is the following.

• In Section 2 we describe the model. This section is divided in three parts: Subsection
2.1 where we describe the equation for the capital stock, Subsection 2.2 where we
set out the optimal control problem of utility maximization, Subsection 2.3 where
the main assumptions of the model are presented and explained.

• Section 3 is devoted to stating a result on the existence of optimal strategies that
is proved in Appendix A.

• Section 4 contains a description of the Hamiltonians of our problem, pointing out
their main features and properties and why we cannot apply standard techniques
to deal with it.

• In Section 5 a set of necessary and a set of sufficient optimality conditions for our
problem are stated. The proofs are provided in Appendix C, which uses the key
results of the Dynamic Programming approach applied to our model contained in
Appendix B. Some useful properties of optimal strategies are also provided.

• Section 6 contains the classification of steady states and their interpretation. It is
divided in 5 subsections: the first three devoted to the definitions of steady states
(6.1) and some preliminary results concerning admissible steady states (6.2) and
price supported steady states (6.3); the fourth devoted to the classification theorem
(6.4); the fifth devoted to the interpretation of such results (6.5). In subsection
(6.1) we distinguish between optimal steady states which are price supported and
optimal steady states which are not so. The latter may exist only if the condition of
full reproducibility does not hold and for this reason they are not fully analyzed in
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this paper . Appendix D shows, by examples, that the set of optimal steady states
which are not price supported is not empty.

2 The Model

There are n commodities, but only one of them is consumed, say commodity 1. Prefer-
ences with respect to consumption over time are such that they can be described by a
single intertemporal utility function Uσ, which is the usual C.E.S. (Constant Elasticity
of Substitution) function used in this kind of literature: for a given consumption path
c : [0,+∞) �→ R we set

Uσ (c (·)) =

∫ +∞

0

e−ρtuσ (c (t)) dt

where the instantaneous utility function uσ depend on a given parameter σ > 0 (the
so-called elasticity of substitution) and is given by

uσ (c) =
c1−σ − 1

1 − σ
for σ > 0, σ �= 1 (1)

u1 (c) = log c for σ = 1

(with the agreement that uσ(0) = −∞ for σ ≥ 1) and ρ ∈ R is the rate of time preference
(or discount rate) of the immortal representative agent. For the sake of simplicity we
will drop the constant − (1 − σ)−1 in the following since this will not affect the optimal
paths. We observe that most of the results of this paper hold also for more general utility
functions u but we will not go in this direction to avoid technicalities.

Technology is fully described by an n×n material input matrix A, the corresponding
output matrix I (which is the n×n identity matrix), and by a uniform rate of depreciation
δx of capital goods used for production. The rate of depreciation for goods not employed in
production is δz. Finally, no primary factor is used in production and there is no choice of
technique. To simplify the technical problems and to concentrate on the most interesting
features of the model we will make some further assumptions that will be described later
(Subsection 2.3). Let us now describe the equation for the stock of capital, starting, for
the sake of clarity, with the discrete time case. Then, in Subsections 2.2 and 2.3 we will
give precise statement of our problem and assumptions.

2.1 The equation for the stock

Let us first formulate the problem in the discrete time case. This is done in order to specify
some features of the continuous time model used in the paper. At time t0 = 0 there is a
starting amount of commodities s0 = s̄. This amount is partly used for producing outputs,
partly it is disposed of so we have sT0 = xT

0 A + zT0 (where x denotes the vector of the
intensities of operation and z the amount of goods which are disposed of). At the end
of the first period we have that the amount of commodities available s1 is equal to the

5



amount of commodities produced for the first period, minus the amount consumed in that
period, plus the residuals from both production and disposal activities:

s1 = xT
0 I + (1 − δx)x

T
0 A + (1 − δz)z

T
0 − c0e

T
1 .

Moreover, the allocation in the next period gives

sT1 = xT
1 A + zT1

So, repeating the argument for every period we have that the evolution is given by

sTt+1 = xT
t I + (1 − δx)x

T
t A + (1 − δz)z

T
t − cte

T
1 ;

sTt = xT
t A + zTt .

Subtracting st the first equation becomes

sTt+1 − sTt = xT
t I − δxx

T
t A − δzz

T
t − cte

T
1 . (2)

The initial datum is s0 = s̄ and the constraints are:

xt, zt ≥ 0; sTt = xT
t A + zTt ; ct ≥ 0. (3)

Now let us go to the continuous time case. We replace the difference equation (2) and
the constraints (3) by their continuous-time analogues. We then consider the following
differential equation for the evolution of the commodities’ stocks (corresponding to (2))

ṡTt = xT
t [I − δxA] − δzz

T
t − cte

T
1 ; s0 = s̄

with the constraints (corresponding to (3))

xt, zt ≥ 0; sTt = xT
t A + zTt ; ct ≥ 0.

These inequalities and equations can be rewritten by eliminating the variable z and setting
δ = −δz + δx as

ṡTt = xT
t [I − δA] − δzs

T
t − cte

T
1 ; (4)

with the initial condition
s0 = s̄

and the constraints
xt ≥ 0; sTt ≥ xT

t A; ct ≥ 0, (5)

where s is the state variable and x and c are the control variables. From now on we will
work with the setting (4) and (5).

Suppose that the production-consumption strategy (x, c) is a measurable and locally
integrable function : R

+ �→R
n × R (we will denote by L1

loc (0,+∞; Rn+1) the set of such
functions). Then the differential equation (4) has a unique solution : R

+ �→R
n which is

absolutely continuous (we will denote by W 1,1
loc (0,+∞; Rn) the set of such functions). Such
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a solution will be denoted by the symbol st;̄s,(x,c), omitting the subscript s̄, (x, c) when it
is clear from the context. Of course such solution can be written in integral form as

sTt = e−δzts̄T+

∫ t

0

e−δz(t−s)xT
s [I − δA] ds−

∫ t

0

e−δz(t−s)cse
T
1 ds.

Given an initial endowment s̄ we will say that a strategy (x, c) ∈ L1
loc (0,+∞; Rn+1)

is admissible from s̄ if the triple
(
x, c, st;̄s,(x,c)

)
satisfies the constraints (5). The set of

admissible control strategies starting at s̄ will be denoted by A(̄s). We stress the fact
that, due to the constraints (5), the set of admissible control strategies depends on the
initial endowment s̄.

We observe that the state variable s and the first control variable x appear only in
the state equation and not in the functional to maximize. In any case, when talking about
control strategies we will always refer to the pair (x, c) (unless clearly specified). Due to
the constraint sTt ≥ xT

t A and to the semipositivity of A the set A(̄s) is clearly a subset of
the space L∞

loc (0,+∞; Rn)×L1
loc (0,+∞; R) (where we denote by L∞

loc (0,+∞; Rn) the set
of locally bounded functions: R �→R

n). We deal with such a general set of control strategies
(instead of the usual set of piecewise continuous strategies) because our existence result
holds only in such context (which is a natural feature of all main existence results).

In some cases we will make use of a truncated problem which is obtained by deleting
some row and some column of matrix A and the corresponding rows and columns of
matrix I. In this case the state equation (4) becomes

ṡTt = xT
t [D − δC] − δzs

T
t − cte

T
1 , (6)

where D and C are the truncated matrices (from matrices I and A, respectively).

2.2 The optimal control problem

Given ρ ∈ R, σ > 0 and the instantaneous utility uσ as in (1) (dropping for simplicity
the constant (1 − σ)−1 when σ �= 1), we fix the initial endowment s̄ and we consider the
problem (Pσ) of maximizing the future discounted utility

Uσ(c) =

∫ +∞

0

e−ρtuσ (c (t)) dt

over all production-consumption strategies (x, c) ∈ A(̄s).

Definition 2.1 A strategy (x∗, c∗) ∈ A(̄s) will be called optimal if we have Uσ(c
∗) > −∞

and
+∞ > Uσ(c

∗) ≥ Uσ(c)

for every admissible control pair (x, c) ∈ A(̄s).

A weaker definition of optimality can be used in the case in which we allow for
strategies that takes values +∞ (or when all strategies take value −∞). We do not treat
this case in this paper; see [32, Section 3.7] for precise definitions.

7



We finally define the value function as

V (̄s) = sup
(x,c)∈A(̄s)

Uσ(c) (7)

recalling that the properties of V will be studied in Appendix B and that they will be used
to establish necessary conditions of optimality (in particular to establish the necessity of
the so-called transversality condition, as in e.g. [7]) and to study the steady states.

2.3 Main Assumptions

We now list and comment on the assumptions we will make troughout the paper.

Assumption 2.2 A is a n× n matrix, nonnegative and irreducible.

This assumption means that in this paper we are setting on one side the problem of
choice of techniques. The assumption on irreducibility of matrix A is made for the sake of
simplicity. It means that each commodity enters directly or indirectly into the production
of any other commodity. The case of a reducible matrix A is interesting both for the
economist and the mathematician. It will be dealt with in another paper.

The eigenvalue of A with maximum modulus will be denoted by λPF > 0. We call vPF

the right eigenvector relative to λPF such that eT1 vPF = 1 and sPF the left eigenvector
relative to λPF such that sTPFe1 = 1. We remember that vPF > 0, sPF > 0, by the
Frobenius Theorem (see [20, pp. 509-519], [34, pp. 367-380]).

Assumption 2.3 1 − δxλPF ≥ 0

This assumption implies that technology allows the economy to grow at a uniform
nonnegative rate. Without it the analysis would be more general, but less interesting.

The two assumptions 2.2 and 2.3 will be always made. In some case, to go deeper
in the study of the main properties of the model, we will use also the following four
assumptions.

Assumption 2.4 δ ≤ 0 i.e. δx ≤ δz.

This means that a commodity used in production decades less quickly (or at most at
the same rate) than the same commodity when is not used in production. This corresponds
to the idea of disposal. The case of positive δ would correspond to the idea of conservation.
But then there is a problem of choice of technique between production and conservation.
This case will be studied in another paper, devoted to the choice of technique.

Assumption 2.5 s̄ > 0.
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This means that at time t = 0 the stock of every capital good is positive: it is done to
ensure reproducibility and to avoid a surrepticious introduction of scarcity. An example
could clarify this point. If ajj > 0 and the j-th element of s̄ is nought, then the j-th
commodity cannot be produced for each t ≥ 0. The model is obviously equivalent to the
one in which in the state equation matrices I and A are substituted with matrix D and
C, where matrix C is obtained from A by deleting the j-th column and all rows of A
which on the j-th column have a positive element (the j-th row is among the deleted rows)
and matrix D is obtained from I by deleting the corresponding rows and the j-th column.
The commodities which exist and are produced by the processes depicted by the deleted
rows are in this way forced to be a sort of exhaustible resources, which are available, but
cannot be produced.

In analyzing steady states we take account also of some cases with semipositive s̄,
since in steady states analysis s̄ is endogenously determined. This will be done, however,
only in cases in which scarcity does not enter in an essential way (in a sense which will
be clarified later).

Assumption 2.6 a11 > 0.

This means that the consumption good enters in its own production: it is in fact
a strong assumption from the economic point of view; however without this assumption
the mathematical treatment of the model would be much more complicated due to the
presence of jumps in co-state variables which yield necessary conditions in terms of finitely
additive measures (see on this [25, Theorem VI.3.93]).

Assumptions 2.5 and 2.6 imply that the optimal trajectory is positive and that the
co-state variables are absolutely continuous (see Appendices B and C, Subsection C.2).
We are currently working on an extension of the model to the more general case when
Assumption 2.6 fails.

Assumption 2.7 a := ρ−
(
λ−1
PF−δx

)
(1 − σ) > 0.

When assumption 2.5 holds this is equivalent to assume existence of optimal strategies
with finite utility (see Theorem 3.1 below).

3 Existence of optimal strategies

In this section we study the problem of existence of optimal strategies. We have the
following result.

Theorem 3.1 Let Assumptions 2.2, 2.3 and 2.5 hold true. For any σ > 0 and initial
datum s̄ > 0, there is an optimal strategy (x, c) for problem (Pσ) if and only if Assumption
2.7 holds. Moreover this strategy is unique in the sense that, if (x̂, ĉ) is another optimal
strategy, then ĉ = c. If Assumption 2.7 does not hold then:

(i) if σ ∈ (0, 1) then there is an admissible strategy with utility +∞;
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(ii) if σ = 1 and λ−1
PF−δx > 0 then there is an admissible strategy with utility +∞;

(iii) if σ = 1 and λ−1
PF−δx = 0 then every admissible strategy has utility −∞;

(iv) if σ ∈ (1,+∞) then every admissible strategy has utility −∞.

Proof. See Appendix A.

Remark 3.2 In the proof of Theorem 3.1 the critical step is finding the subset of the
parameters’ space for which the value function if finite. This is done by providing some
estimates on the growth rate of all admissible strategies (to prove that V is finite or
−∞) and/or some examples (to prove that V is +∞). In each case the needed restriction
is given by Assumption 2.7. Once the value function is finite, well-known compactness
techniques apply, so that existence is granted.

The full proof requires some technicalities and a lot of calculations that are relegated
to Appendix A.

In fact the above theorem could be extended also to the case when s̄ ≥ 0, with suitable
adjustments. We skip them for brevity. From now on we will assume that Assumption 2.7
holds.

In the next two Sections we supplement Theorem 3.1 with a set of duality results. In
particular, we introduce the (current) shadow prices for the constraints (4) and (5) and
prove a set of sufficient conditions and a set of necessary conditions involving such shadow
prices. The economic interpretation concerns the existence of a price path supporting the
optimal path of capital accumulation.

4 The Hamiltonians

In next section we will provide necessary and sufficient conditions for an admissible solu-
tion to be optimal by using Hamiltonians. The present section show some special features
of the Hamiltonians of the problem at hand and why we cannot use known results.

The current value Hamiltonian H of our problem (Pσ) is given, for σ �= 1, by

H (s,v;x, c) = −δzsTv + xT [I − δA]v − ceT1 v +
c1−σ

1 − σ
s,v,x,∈ R

n;

c ∈ [0,+∞) , if σ < 1, and c ∈ (0,+∞) , if σ > 1

and, for σ = 1 by

H (s,v;x, c) = −δzsTv + xT [I − δA]v − ceT1 v + log c

s,v,x, ∈ R
n; c ∈ (0,+∞) .

Note that it is the sum of three parts:

H1(s,v) = −δzsTv; H2(v;x) = xT [I − δA]v
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H3(v; c) = −ceT1 v +
c1−σ

1 − σ
; or − ceT1 v + log c

where H1 does not depend on the control (x, c).
The maximum value Hamiltonian is, for s,v ∈ R

n if σ < 1

H0(s,v) = max
(x,c)≥0, xT A≤sT

H(s,v;x, c)

while, if σ ≥ 1
H0(s,v) = max

(x,c)≥0, xT A≤sT
H(s,v;x, c)

(note that we use the notation max instead of sup since we know that the maximum is
attained here). If we have

eT1 v > 0

then the maximum point of H3(v; c) is attained at c =
(
eT1 v

)−1/σ
, so that, for σ �= 1,

H0(s,v) = −δzsTv+ max
x≥0,xT A≤sT

{xT [I − δA]v} +
σ

1 − σ

(
eT1 v

)σ−1
σ .

and, for σ = 1

H0(s,v) = −δzsTv+ max
x≥0,xT A≤sT

{xT [I − δA]v} − 1 − log
(
eT1 v

)
On the contrary, if

eT1 v = 0

then for σ ∈ (0, 1]
H0(s,v) = +∞.

while, for σ > 1
H0(s,v) = −δzsTv+ max

x≥0,xT A≤sT
{xT [I − δA]v}.

Finally, if
eT1 v < 0

then, for every σ > 0,
H0(s,v) = +∞.

To simplify notation we define:

H01(s,v) = −δzsTv; H02(s,v) = max
x≥0,xT A≤sT

{xT [I − δA]v}

H03(v) =
σ

1 − σ

(
eT1 v

)σ−1
σ or − 1 − log

(
eT1 v

)
,

so that, for σ ∈ (0, 1]

H0(s,v) =

{
H01(s,v) +H02(s,v) +H03(v); if eT1 v > 0
+∞; if eT1 v ≤ 0
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and, for σ > 1

H0(s,v) =



H01(s,v) +H02(s,v) +H03(v); if eT1 v > 0
H01(s,v) +H02(s,v); if eT1 v = 0
+∞; if eT1 v < 0

.

Recall that H02(s,v) is the value of the maximum of the linear programming problem:


max xT [I − δA]v
xTA ≤ sT

x ≥ 0
(8)

The corresponding dual problem is


min sTq
Aq ≥ [I − δA]v
q ≥ 0.

(9)

Since both problems have feasible solutions (also due to the semi-positivity of each
row of matrix A) then both problems have optimal solutions and

x̄ ∈ argmax {xT [I − δA]vt; x ≥ 0; xTA ≤ sT}

if and only if there exists q̄ ∈R
n such that

Aq̄ ≥ [I − δA]v; q̄ ≥ 0; x̄T [I − δA]v = x̄TAq̄ = sT q̄.

This will be used in the formulation of optimality conditions in the next section.
Note that the Hamiltonians H2 (with respect to production) and H3 (with respect to

consumption) present some unpleasant features from the technical point of view:

• H2 is not strictly convex so the maximum point does not need to be unique: moreover
the set of optimal solutions (which give the optimal production strategy) is not a
smooth function on the set of feasible data (usually this is associated with a lack
of uniqueness for the optimal strategy x and with a lack of regularity for the value
function and for the dual variable v).

• The domain of H2 depends on the state variable (due to the state - control con-
straint).

• Both H2 and H3 can be infinite for some value of the dual variables (v,q).

• The domain of H3 is not bounded.

As far as we know, models of the type discussed are not treated in the mathematical
literature on optimal control (e.g. [28, 29] treat general constraints but assume bounded
strategies, and similarly [32], while [4] treats unbounded strategies but different types of
constraints, and so on). This is the reason, mentioned in the introduction, which forced
us to study the problem since from the beginning.
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5 Optimality Conditions

In this section we discuss optimality conditions for our problems. Then we will use them to
study the nature of the steady state solutions in Section 6. The main result are Theorem
5.1 and Theorem 5.3 below where a set of sufficient and a set of necessary conditions is
stated.

Let us begin with the sufficient conditions.

Theorem 5.1 (Sufficient conditions). Let Assumption 2.2, 2.3 and 2.7 hold. If (x̂, ĉ) is an
admissible production-consumption strategy starting at s̄, ŝ is the associated commodities’
stock trajectory and there exist two functions v,q : R

+ �→ R
n such that v is absolutely

continuous, q is measurable and locally integrable and they satisfy for almost every t ≥ 0:

˙̂s
T

t = −δzŝTt + x̂T
t [I − δA] − ĉte

T
1 (10)

v̇t = (ρ+ δz)vt − qt; (11)

ĉ−σt = eT1 vt > 0 (12)

(I−δA)vt ≤ Aqt (13)

x̂t ≥ 0; x̂T
t A ≤ ŝTt ; qt ≥ 0 (14)

x̂T
t (I−δA)vt = x̂T

t Aqt = ŝTt qt (15)

lim
t→+∞

e−ρtŝTt vt = 0 (16)

vt ≥ 0 (17)

Then (x̂, ĉ) is optimal.

Proof. See Appendix C.

Remark 5.2 In fact the above Theorem 5.1 holds under more general Assumptions. In
particular we mention the following extensions, which come straightforwardly from the
proof, which will be needed in studying the steady states in Section 6 and in Appendix
D.

• The condition (17) can be substituted with the weaker one:

lim
t→+∞

e−ρtsTt vt ≥ 0

for every admissible trajectory s starting at s̄.

• The matrix I in the state equation can be substituted by a semipositive matrix B;
moreover, both A and B can be rectangular (and congruent) and A does not need
to be irreducible. Finally Assumption 2.3 does not need to hold.

13



We now pass to necessary conditions.

Theorem 5.3 (Necessary conditions). Let Assumptions 2.2, 2.3, 2.5, 2.6 and 2.7 hold.
Let (x̂, ĉ) be an optimal production-consumption strategy starting at s̄, ŝ be the associated
commodities’ stock trajectory. Then there exists two functions v,q : R

+ �→ R
n such that v

is absolutely continuous, q is measurable and locally bounded and they satisfy for almost
every t ≥ 0:

˙̂s
T

t = −δzŝTt + x̂T
t [I − δA] − ĉte

T
1 (18)

v̇t = (ρ+ δz)vt − qt; (19)

ĉ−σt = eT1 vt > 0 (20)

(I−δA)vt ≤ Aqt (21)

x̂t ≥ 0; x̂T
t A ≤ ŝTt ; qt ≥ 0 (22)

x̂T
t (I−δA)vt = x̂T

t Aqt = ŝTt qt (23)

lim
t→+∞

e−ρtŝTt vt = 0 (24)

Moreover for a.e. t ≥ 0,
vt ∈ D+V (̂st) (25)

(where D+V (s) denotes the superdifferential of V at a point s).

Proof. See Appendix C.

Remark 5.4 In the case when s̄ ≥ 0 The above Theorem 5.3 holds in a weaker form.
In particular the locally bounded function q becomes a finitely additive measure and the
co-state inclusion (25) can fail to hold.

Remark 5.5 Observe that for a.e. t ≥ 0 the point x̂t is a solution of the linear program-
ming problem (8) with s = ŝt and v = v̂t. Moreover the point ĉt is the solution of the
optimization problem max{−ceT1 vt + uσ(c)}. This is the so-called Maximum Principle.
Observe also that q is a solution of the dual problem (9) with s = ŝt and v = v̂t.

It is well known that if a complete set of markets exists, then the prices supporting
the optimal path are also competitive equilibrium prices. In this respect equations and
inequalities (18)-(24) can be interpreted as if at each instant of time there are both spot
markets (in which the ’services’ of capital stocks are traded) and asset markets (that
allow agents to transfer purchasing power through time); moreover, the consumer owns
the whole capital, which she continuously rents to ’firms’ on competitive spot markets,
and (continuously) trades on the asset markets in order to save (or dissave). In this
interpretation, qt is the vector of spot rental rates for the capital goods and vt is the vector
of spot prices of stocks. We also note that in view of Theorem 5.3, one can reinterpret
Theorem 3.1 as an existence (and uniqueness) result for competitive equilibria for an
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economy so depicted. In the following we will refer to vt as the (shadow) prices and to qt

as the (shadow) rentals.
Due to the ”nonsmooth” nature of the problem the proofs of Theorems 5.1 and 5.3

are not contained in known results that one can refer to. We will give them, at least for the
parts where we cannot apply directly standard results given in the literature. We remark
that the proof of necessity is quite heavy and strongly uses results of Appendix B where
we apply the dynamic programming method to our problem.

Remark 5.6 We point out the following technical facts about Theorem 5.3.

1. The co-state inclusion (25) is quite hard to obtain but it plays a key role here. In
fact, using the properties of the value function V proved in Appendix B it allows
one to get the nonnegativity of v and the transversality condition (24) and these
are key points to prove the classification theorem in Section 6.

2. The transversality condition (24) is in general not necessary for infinite horizon
problems. It turns out to be necessary here due to the concavity of the problem. To
prove the necessity of it we use the co-state inclusion (25) and the properties of the
value function proved in Appendix B in particular its concavity (see [7], for similar
arguments).

3. In general the co-state v can be discontinuous. However, in our case assumptions
2.5 and 2.6 rule out the discontinuity of v since they guarantee that a special
kind of “constraints qualification” holds in our case (see [25, Hypothesis VI.3.98].
More precisely such “constraints qualification” follows from the fact that, when
starting from a positive s̄, the optimal trajectory remains positive. This fact is a
consequence of the regularity of the value function and is proven in Corollary B.6 in
Appendix B. See also [32], [31], [17]) for another, more classical, kind of “constraints
qualification”.

4. The lack of strict concavity in the Hamiltonian H2 (i.e. no unique maximum point)
is a source of nonsmoothness in our problem.

5. Assumption 2.4 is not needed here.

The above results allow us to prove the following properties of the optimal strategy
ĉ that will be useful in studying the steady states.

Proposition 5.7 Let Assumptions 2.2 ,2.3, 2.5 and 2.7 hold. Assume also that (x̂,ĉ) ∈
A(̄s) is optimal for the problem (Pσ) and let ŝ be the corresponding optimal state. Then the
optimal consumption strategy ĉ is absolutely continuous and strictly positive and satisfies
the differential equation

˙̂ct =
ĉt
σ

[
−ρ− δz +

eT1 qt

eT1 vt

]
; ĉ0 =

(
eT1 v0

)−1/σ
. (26)
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where v and q are the co-state path introduced in Theorems 5.1 and 5.3. Moreover we
have for every t ≥ 0

ĉt ≥
(
sTPFv0

)−1/σ
e(−1/σ)(ρ+δx−λ−1

PF )t (27)

Proof. The absolute continuity of c and equation (26) easily follow from the necessary
optimality condition (20) which gives

ĉt =
(
eT1 vt

)−1/σ

and from the co-state equation (19).
Moreover (27) follows from the inequality

sTPFvt ≤ e(ρ+δx−λ
−1
PF )tsTPFv0 (28)

which we prove now. Taking the inner product of the inequality (21) by sTPF we obtain

Aqt − [I−δA]vt ≥ 0 =⇒ sTPF [I−δA]vt ≤ sTPFAqt

⇐⇒ (1 − δλPF ) sTPFvt ≤ λPF sTPFqt ⇐⇒ −sTPFqt ≤ −
(
λ−1
PF − δ

)
sTPFvt

so that
sTPF v̇t = (ρ+ δz) s

T
PFvt − sTPFqt ≤

(
ρ+ δx − λ−1

PF

)
sTPFvt

and the claim (28) follows.
Now, substituting estimate (28) into (20) we get

eT1 vt ≤ sTPFvt ≤ e(ρ+δx−λ
−1
PF )tsTPFv0

so that
ct =

(
eT1 vt

)−1/σ ≥ e(−1/σ)(ρ+δx−λ−1
PF )t (sTPFv0

)−1/σ

and the claim follows.

6 Steady state solutions

In this section we study the optimal steady state solutions to problem (Pσ) providing the
existence of optimal steady state solutions and further results regarding their structure
and, for some values of the parameters, their uniqueness.

There are at least two reasons to study optimal steady state solutions. The most
important one is certainly connected to the possibility of proving the convergence of the
optimal path towards the steady state solution. In this context the study of the static and
comparative static properties of the model sets the stage for the study of the dynamics
of optimal paths. However, stability results are not reported here, because a preliminary
examination of them showed that delicate points arise in the general case. Asymptotic
turnpike theorems are known to hold for various discrete-time versions of the linear growth
model ([2], [14], [19]). Moreover, it is common wisdom that at least the local version of
the (asymptotic) turnpike result can be easily proved for ’low’ values of the discount rate
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(see, [22]). Nevertheless, it turned out that the technical issues of non-smoothness and
the lack of strict concavity that characterize our continuous-time framework preclude the
use of known results even for the analysis of local stability. This convinced us that a full
dynamic analysis of the model requires a specific study.

The other reason to deal with steady states is that in these states some relevant
concepts, such as that of “real rate of profit” or “growth rate”, can be defined. The
literature on growth often refers to steady states in order to convey some macroeconomic
insights. In [21], for example, such steady state concepts as the “rate of growth” or the
“real rate of profit” that in general are meaningless with regard to non-stationary paths,
are freely used under the explicit assumption of a fast convergence to the steady state.
Section 6.5 is devoted to these analyses.

We should like to add that some growth theorists simply do not believe that the
assumption of an infinitely lived and omniscient representative agent is appropriate to
describe the behavior of a changing system. From this point of view, once the controversial
assumption of perfect foresight is abandoned, the laws of change that characterize an
optimal path become irrelevant. But such objection does not seem to apply to the set of
paths with a stationary structure.

6.1 Definitions of steady state solutions

We start with the following definitions.

Definition 6.1 A state-control pair (st, (xt, ct)) of problem (Pσ) will be called a steady
state solution (or simply a steady state) if it solves the state equation (4) and satisfies

ct = c0e
gt, xT

t = xT
0 e

gt, ∀t ≥ 0 (29)

for a given constant rate of growth, g ∈ R, c0 > 0 and x0 ≥ 0.

Definition 6.2 A steady state solution (st, (xt, ct)) of problem (Pσ) will be called an ad-
missible steady state solution (or simply an admissible steady state) if it satisfies the
constraints

xT
t A ≤ sTt , ∀t ≥ 0.

Definition 6.3 An admissible steady state solution (st, (xt, ct)) of problem (Pσ) will be
called an optimal steady state solution (or simply an optimal steady state) if it is an
optimal pair for the problem (Pσ).

Definition 6.4 An admissible steady state solution (st, (xt, ct)) of problem (Pσ) will be
called a price supported steady state solution (or simply a price supported steady state)
if there exist two functions v,q : R

+ �→ R
n such that v is absolutely continuous, q is

measurable and locally bounded and they satisfy for almost every t ≥ 0:

v̇t = (ρ+ δz)vt − qt (30)

ĉ−σt = eT1 vt > 0 (31)
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(I−δA)vt ≤ Aqt (32)

qt ≥ 0 (33)

xT
t (I−δA)vt = xT

t Aqt = sTt qt (34)

lim
t→+∞

e−ρtŝTt vt = 0 (35)

vt ∈ D+V (̂st) for a.e. t ≥ 0. (36)

Remark 6.5 We note that in a steady state solution the stock path s does not need to
grow at a uniform rate, however the state equation

ṡTt =
[
xT

0 (I − δA) − c0e
T
1

]
egt − δzs

T
t

strongly constrains its structure since it implies

sTt =
1

g + δz

[
xT

0 (I − δA) − c0e
T
1

]
egt +

{
sT0 − 1

g + δz

[
xT

0 (I − δA) − c0e
T
1

]}
e−δzt

if g + δz �= 0, and
sTt =

[
xT

0 (I − δA) − c0e
T
1

]
te−δzt + sT0 e

−δzt

if g + δz = 0.

Remark 6.6 Theorem 5.1 ensures that every price supported steady state is optimal,
while Theorem 5.3 ensures that an optimal steady state with s̄ > 0 is also a price-
supported steady state. The examples reported in Appendix D, however, show that there
are optimal steady states with a nonpositive s̄ which are not price-supported. These steady
states are obtained by superimposing that some commodity is not available at time 0 and,
as a consequence of this fact and of the form of matrix A, is not available at any time. That
is, scarcity enters in an essential way. These cases are not to be confused with the cases
in which, for some values of the parameters, the conditions mentioned in Definition 6.4
require that some commodities are not available at any time. Since this paper is devoted
to the analysis of cases of full reproducibility, the optimal steady states which are not
price supported are not fully studied in this paper (our conjecture is that such steady
states play no role in the dynamical analysis of paths starting from positive s̄).

6.2 Admissibility of steady state solutions

According with Definition 6.2 and Remark 6.5 a steady state solution is admissible if and
only if it satisfies, for every t ≥ 0, the constraint

xT
0 A ≤ 1

g + δz

[
xT

0 (I − δA) − c0e
T
1

]
+

{
sT0 − 1

g + δz

[
xT

0 (I − δA) − c0e
T
1

]}
e−(g+δz)t (37)

if g + δz �= 0, and
xT

0 A ≤
[
xT

0 (I − δA) − c0e
T
1

]
t+ sT0 (38)

if g + δz = 0. Then the following result holds.
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Proposition 6.7 Let Assumption 2.2 hold. A steady state solution (st, (xt, ct)) for prob-
lem (Pσ) is admissible if and only if

xT
0 A ≤ sT0 (39)

and either
xT

0 [I − (g + δx)A] ≥ c0e
T
1 for g + δz ≥ 0 (40)

or

sT0 − 1

g + δz

[
xT

0 (I − δA) − c0e
T
1

]
≥ 0 for g + δz ≥ 0. (41)

Moreover, the constraint xT
t A ≤ sTt is binding (i.e. satisfied with equality) with regard the

j−th component for some t > 0 if and only if it is binding for every t ≥ 0 and this happens
if and only if xT

0 Aej = sT0 ej and

xT
0 [I − (g + δx)A] ej = c0e

T
1 ej (42)

Remark 6.8 Observe that we always have g + δx < λ−1
PF . In the case when g + δx ≥ 0

this follows from (40), Assumption 2.4 and the Frobenius Theorem. In the case when
g + δx < 0 this follows from the positivity of λ−1

PF .

Proof of Proposition 6.7. It is clear that admissibility always implies xT
0 A ≤ sT0 .

For the conditions (40) and (41) we have:

1. if g + δz > 0, then by letting t→ +∞ (37) implies

xT
0 A ≤ 1

g + δz

[
xT

0 (I − δA) − c0e
T
1

]
⇐⇒ xT

0 [I − (g + δx)A] ≥ c0e
T
1 .

Vice versa, if (40) holds then

xT
0 A ≤ 1

g + δz

[
xT

0 (I − δA) − c0e
T
1

]
and this, plus xT

0 A ≤ sT0 , gives that (37) holds.

2. if g + δz = 0, then, dividing (38) by t and letting t→ +∞ we get

xT
0 (I − δA) ≥ c0e

T
1 . (43)

which is (40). Vice versa it is clear that (43) plus xT
0 A ≤ sT0 implies (38).

3. if g+δz < 0, multiplying (37) by e(g+δz)t and letting t→ +∞ we get that (41) holds.
Vice versa it is immediately clear that (41) and xT

0 A ≤ sT0 imply (37).

We prove the final claim only for the case g+δz > 0 as the other cases are completely
similar. In this case the right hand side of (37) is exponentially decreasing. So, if the
constraint in (37) is binding for a given t > 0 in the j-th component, then the right hand
side is constant. This gives exactly

xT
0 Aej =

1

g + δz

[
xT

0 (I − δA) − c0e
T
1

]
ej.
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6.3 Price supported steady state solutions and existence of price
supports with constant growth rate

We study here the properties of the price-rental path for a given price supported steady
state. In the general case s̄ ≥ 0 we get precise constraints on the data g ∈ R, c0 > 0,
x0 ≥ 0, on the stock path st and on the corresponding price-rental paths (v,q). In
particular we get the existence of price supports with constant growth rate. Recall that,
when s̄ ≥ 0 but not s̄ > 0 the optimal state solutions do not need to be price supported
(see Appendix D). The following result holds.

Proposition 6.9 Let Assumptions 2.2, 2.3, 2.4, 2.6 and 2.7 hold. Then any price sup-
ported steady state solution (st, (xt, ct)) of problem (Pσ) with s0 ≥ 0 satisfies

(i) g ∈
[
σ−1

(
λ−1
PF − δx − ρ

)
, λ−1

PF − δx
)

and this interval is always nonempty; as a con-
sequence

ρ− g(1 − σ) > 0, ρ+ δx + gσ > 0. (44)

(ii) for every t ≥ 0 and for every price-rental path (vt,qt) satisfying the conditions (30)
– (36) mentioned in Definition 6.4

eT1 vt = c−σ0 e−gσt, eT1 qt = (ρ+ δz + σg) c−σ0 e−gσt, (45)

xT
0 Ae1= sT0 e1, sTt e1 = sT0 e1e

gt, (46)

xT
0 [I− (g + δx)A] e1 = c0, (47)[

xT
0 [I − (g + δx)A] − c0e

T
1

]
eje

T
j qt = 0;

[
xT

0 A − sT0
]
eje

T
j qt = 0 ∀j = 1 . . . n.

(48)

(iii) there exists a price vector v0 ≥ 0 such that the price-rental path

(vt,qt) =
(
v0e

−gσt, (ρ+ δz + gσ)v0e
−gσt) (49)

satisfies the conditions mentioned in definition 6.4. Such (vt,qt) will be called a
steady state price-rental path supporting the steady state (st, (xt, ct)) .

Remark 6.10 From point (iii) we obtain that any admissible steady state solution with
g ∈

[
1
σ

(
λ−1
PF − δx − ρ

)
, λ−1

PF − δx
)

is price supported if and only if there is a vector v0

such that:
eT1 v0 = c−σ0 > 0 (50)

[I− (ρ+ δx + gσ)A]v0 ≤ 0, (51)

v0 ∈ D+V (s0), (52)

xT
0 [I− (ρ+ δx + gσ)A]v0 = 0. (53)[

xT
0 A − sT0

]
v0 = 0. (54)
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Proof of Proposition 6.9.
Proof of (i). We observe first that the proof of Proposition 5.7 holds also when we

are dealing with a price supported steady state. Then, by the statement of Proposition
5.7 we have, for suitable M > 0

ct ≥Meσ
−1[λ−1

PF−ρ−δx], ∀t ≥ 0

which gives g ≥ σ−1
[
λ−1
PF − ρ− δx

]
. Moreover from Remark 6.8 we get the required upper

bound.
Observe now that the interval

[
σ−1

[
λ−1
PF − ρ− δx

]
, λ−1

PF − δx
)

is always nonempty
since by Assumption 2.7 we have

ρ >
(
λ−1
PF − δx

)
(1 − σ) ⇐⇒ σ−1

[
λ−1
PF − ρ− δx

]
< λ−1

PF − δx.

Finally we observe that inequalities (44) are obvious consequences of the bounds on g and
of the positivity of λPF .

Proof of (ii). From equations (30) and (31) we have (45). In fact

eT1 vt = c−σt = c−σ0 e−gσt

eT1 qt = (ρ+ δz) e
T
1 vt − eT1 v̇t = (ρ+ δz + σg) eT1 vt = (ρ+ δz + σg) c−σ0 e−gσt.

Since ρ+ δz + σg > 0, eT1 qt > 0. Hence, from (34) we get

xT
t Ae1 = sTt e1, ∀t ≥ 0.

And (46) follows by the definition of the steady state.
Now from the admissibility conditions (37) and (38) it follows that, on the first

component

xT
0 Ae1 =

1

g + δz

[
xT

0 (I − δA) − c0e
T
1

]
e1

when g + δz �= 0 and
xT

0 (I − δA) e1 − c0 = 0

when g + δz = 0 so that the claim (47) easily follows.
Finally (48) follows from (37) and from (34).
Proof of (iii).
Step 1. We observe that, for j ∈ {2, ..., n} such that either

(g + δz) s
T
0 ej − xT

0 (I − δA) ej �= 0

or
(g + δz) s

T
0 ej − xT

0 (I − δA) ej = 0 and xT
0 Aej < sT0 ej

we get
eTj vt = eTj v0 = 0

for any price path vt.
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In fact, from Proposition 6.7 in both cases the constraint xT
t Aej ≤ sTt ej is never

binding for t > 0. This yields, thanks to condition (34) that eTj qt = 0 for t > 0 for every
rental path q.

Then, from (30) we get eTj vt = e(ρ+δz)teTj v0 for every price path v. When g + δz �= 0

the transversality condition (35) yields, setting kj = (g + δz)
−1 xT

0 (I − δA) ej,

e−ρt
(
eTj vt

) (
sTt ej

)
= eTj v0

[
kje

(δz+g)t +
(
sT0 ej − kj

)]
→ 0, as t→ +∞.

Similarly, when g + δz = 0, setting kj = xT
0 (I − δA) ej, we have

e−ρt
(
eTj vt

) (
sTt ej

)
= eTj v0

[
kjt+

(
sT0 ej

)]
→ 0, as t→ +∞.

Now, if
(g + δz) s

T
0 ej − xT

0 (I − δA) ej �= 0

the claim is immediate. If

(g + δz) s
T
0 ej − xT

0 (I − δA) ej = 0 and xT
0 Aej < sT0 ej

then for g + δz = 0 we get kj = 0 but sT0 ej > 0 which gives the claim. For g + δz > 0 we
observe that sT0 ej = kj > 0 and the claim follows. Finally for the case g + δz < 0 we need
to use Assumption 2.4. In fact, by sT0 ej = kj > 0 we get that xT

0 [I − δA] ej < 0 which
contradicts Assumption 2.4.

Step 2. Here we claim that

D+
j V (st) = e−gσtD+

j V (s0) ∀j = 1, . . . , n,

and that V is constant in all directions j as in the above step 1. The proof of these two
facts follows by applying the regularity properties of V proved in Appendix B (Proposition
B.2(iii)) and is omitted here for brevity.

Step 3. Finally take any admissible price path vt. Take its starting point v0 and set

v̂t := e−gσtv0 ∈ D+V (st) ∀t ≥ 0.

Then the path v̂t, q̂t = (ρ + δz + gσ)v̂t satisfies all sufficient conditions by a nontrivial
verification procedure that uses the properties of superdifferentials and the concept of
viscosity solution. We omit it for brevity.

Note that we only have to look at j such that

(g + δz) s
T
0 ej − xT

0 (I − δA) ej = 0 and xT
0 Aej = sT0 ej.

6.4 The classification theorem

We now use the results of the previous subsections to prove existence and uniqueness of
price supported steady states and to give a classification of them. We will show how the

22



price supported steady states vary depending on the value of the discount rate ρ with
respect to the other parameters of the model and show for one case, which turns out to
be the only one with nonnegative rate of growth, uniqueness up to a multiplication by a
constant.

We will see that the following three cases arise (recall that by Assumption 2.7 we
have ρ >

(
λ−1
PF − δx

)
(1 − σ))

• If
(
λ−1
PF − δx

)
(1 − σ) < ρ < λ−1

PF − δx (1 − σ) then there exists a unique (up to a
multiplication by a constant) price supported steady state with

g = σ−1
[
λ−1
PF − δx − ρ

]
∈

(
−δx, λ−1

PF − δx
)

• If λ−1
PF − δx (1 − σ) ≤ ρ ≤ a−1

11 − δx (1 − σ) then there exists a cone of dimension ≥ 1
of price supported steady states with growth rate g = −δx classified in Theorem
6.11.

• If ρ > a−1
11 − δx (1 − σ) then there exists a cone of dimension n of price supported

steady states with growth rate

g = σ−1
[
a−1

11 − δx − ρ
]
∈ (−∞,−δx)

classified in Theorem 6.11.

Summing up we can say that we always have uniqueness of the growth rate g (that
will depend on the value of ρ with respect to the other parameters) while the uniqueness
of the trajectory (up to a constant) holds only in the first case.

Theorem 6.11 Let Assumptions 2.2, 2.3, 2.4, 2.6, and 2.7 hold. Then

1. If (
λ−1
PF − δx

)
(1 − σ) < ρ < λ−1

PF − δx (1 − σ) ,

then there exists a unique (up to a multiplication by a positive scalar constant) price
supported steady state (st, (xt, ct)) of problem (Pσ) given by

sTt = sT0 e
gt, ct = c0e

gt, xT
t = xT

0 e
gt, ∀t ≥ 0

where
g = σ−1

[
λ−1
PF − δx − ρ

]
∈

(
−δx, λ−1

PF − δx
)

c0 > 0, x0 = c0e
T
1 [I− (g + δx)A]−1 > 0, sT0 = xT

0 A > 0

and with supporting prices and rentals given by (49) where

v0 = c−σ0 vPF> 0, q0 =
(
λ−1
PF − δ

)
v0 > 0.
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2. If λ−1
PF − δx (1 − σ) ≤ ρ ≤ a−1

11 − δx (1 − σ) then there is a cone of dimension ≥ 1 of
price supported steady states classified as follows: (st, (xt, ct)) is a price supported
steady state if and only if

• the growth rate is g = −δx;
• it satisfies (29) with

c0 > 0, x0 = c0e1 + α, sT0 = xT
0 A + β

where
α ≥ 0, αTv0 = αTAv0 = 0,

β ≥ 0, βTv0 = 0

and v0 is a solution of the system


[I− (δx + ρ− σδx)A]y ≤ 0

eT1 y = c−σ0 >0

eT1 [I− (δx + ρ− σδx)A]y = 0

y ≥ 0.

In this case the steady state price-rental path (v,q) is as in (49) and the stock
path is given by:

sTt =
{
sT0 − α

δ
− β

}
e−δxt +

{α

δ
+ β

}
e−δzt

if δ �= 0, and
sTt =

[
sT0 + tα

]
e−δzt

if δ = 0.

3. If ρ > a−1
11 − δx (1 − σ) then there is a cone of dimension n of price supported steady

states classified as follows: (st, (xt, ct)) is a price supported steady state if and only
if

• the growth rate is g = σ−1
[
a−1

11 − δx − ρ
]
∈ (−∞,−δx) ;

• it satisfies (29) with

c0 > 0, x0 =
σc0

ρa11 − (1 − δxa11) (1 − σ)
e1 + α, s0 = xT

0 A + β

where
α ≥ 0, αTv0 = αTAv0 = 0,

β ≥ 0, βTv0 = 0
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and v0 is a solution of the system


[
I−a−1

11 A
]
y ≤ 0

eT1 y = c−σ0 > 0

eT1
[
I−a−1

11 A
]
y = 0;

y ≥ 0.

In this case the steady state price-rental path (v,q) is as in (49) and the stock path
is given by:

sTt =
egt

g + δz

{
−δsT0 +

[(
xT

0 e1 − c0
)
eT1 + α + δβ

]}
+
e−δzt

g + δz

{
(g + δx) s

T
0 −

[(
xT

0 e1 − c0
)
eT1 + α + δβ

]}
.

if g + δz �= 0 and

sTt = e−δzt
{
sT0 + t

[
−δsT0 +

(
xT

0 e1 − c0
)
eT1 + α + δβ

]}
if g + δz = 0.

We state the following Lemmas which will be used in the proof of the main theorem.

Lemma 6.12 In a price supported steady state the first process is always operated, i.e.

xT
0 e1 > 0.

Proof. Obtain from statement (ii) of Proposition 6.9 that x �= 0. Then assume on
the contrary that xT

0 e1 = 0. Then without loss of generality we can partition vectors x0,
v0 and the matrix A as follows

x0 =

[
0
x2

]
; v0 =

[
v01

v02

]
; A =

[
A11 A12

A21 A22

]

with x2 > 0, v02 has the same number of components as x2 and A22 is square and its
order equals the number of components of x2.

Then by equations (48) and (49) we get

− (g + δx)x
T
2 A21v01 = c0e

T
1 v01 (55)

and
xT

2 [I− (g + δx)A22]v02 = 0.

The former implies g + δx < 0 and xT
2 A21v01 > 0. Then the latter, implies v02 = 0.

Further, from equation (53) we get,

− (ρ+ δx + σg)xT
2 A21v01 = 0,

which contradicts (55) since (44) holds.
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Lemma 6.13 We have
0 < g + δx < λ−1

PF ⇐⇒ x0 > 0

and in this case
g = σ−1

(
λ−1
PF − ρ− δx

)
; v0 = c−σ0 vPF > 0. (56)

Proof. In this proof we use the so called Frobenius Theorem for indecomposable ma-
trices. If 0 < g+ δx < λ−1

PF then matrix [I− (g + δx)A] is invertible and [I− (g + δx)A]−1

is positive. Hence we obtain from (40) and Assumption 2.4 that x0 > 0.
If x0 > 0, then we get from (51), (52), (53) that

[I− (ρ+ δx + σg)A]v0 = 0, v0 ≥ 0

which, taking account of equality (50), implies (56). Then, by equations (48) and (49) we
obtain that

sT0 = xT
0 A, xT

0 [I− (g + δx)A] = c0e
T
1 .

The last equation holds, with a positive x0, if and only if 0 < g + δx < λ−1
PF .

Lemma 6.14 Let A be a semipositive indecomposable matrix with a11 > 0 and let H be
a given set of indices

H = {h1, ..., hz} , 1 < h1 < ... < hz.

Then the set

Z(A, H)

: =

{
θ ∈ R|∃y ∈R

n : y ≥ 0, eT1 y > 0, [I−θA]y ≤ 0,

[
eT1 +

∑
h∈H

eTh

]
[I−θA]y = 0

}

is such that [
λ−1
PF , a

−1
11

]
⊇ Z(A, H) ⊇

[
λ−1
PF , λ

−1
1

)
where λ1 is the eigenvalue of maximum modulus of the matrix

B =



a11 a1h1 ... a1hz

ah11 ah1h1 ... ah1hz

· · ... ·
· · ... ·
ahz1 ahzh1 ... ahzhz




Moreover, if H is empty, then Z(A,H) =
[
λ−1
PF , a

−1
11

]
.

Proof. If θ < λ−1
PF , then there is no y ≥ 0 such that [I−θA]y ≤ 0 whereas for θ > a−1

11

, there is no y ≥ 0 such that eT1 y > 0, eT1 [I−θA]y = 0. This proves the first inclusion.
To prove the second inclusion observe first that, obviously, λ−1

PF ∈ Z(A,H).
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Consider now the case of H nonempty. With no loss of generality assume that H =
{2, 3, ..., z + 1} and partition A in four submatrices in such a way that matrix B is the
submatrix A11 of A. Then, if θ ∈

(
λ−1
PF , λ

−1
1

)
, the vector

y =

(
θ (I−θA11)

−1 A12vPF2

vPF2

)
(57)

(where vPF2 denotes the last n− (z + 1) components of the Frobenius eigenvector of A)
satisfies the relevant (in)equalities since, by simple calculations one gets (since λPF θ < 1)

θ (I−θA11)
−1 A12vPF2 > vPF1

(where vPF1 denotes the first (z + 1) components of the Frobenius eigenvector of A).
Finally, if H is empty, then λ1 = a11 and the solution given in (57) works also in this

case for θ ∈
(
λ−1
PF , a

−1
11

)
. We have just to show that a−1

11 ∈ Z(A,H), which is certainly the
case since the vector y = e1 satisfies the relevant (in)equalities.

Proof of Theorem 6.11. We show only the necessity part of our statements, i.e.
that the steady states must satisfy cases 1-2-3. The sufficiency part, i.e. the fact that
the solution proposed in the statement satisfies the steady state conditions, follows by
straightforward calculations and we omit it.

Now, to prove the necessity we take any steady state and look at the steady state
rate of growth. We have substantially three different possibilities (that form a complete
partition of all possible price supported steady states):

(I) g + δx > 0.

(II) g + δx = 0.

(III) g + δx < 0.

We are going to prove that the first case corresponds to point 1 of the statement, the
second case corresponds to point 2 and the third to point 3.

Case (I). Since Remark 6.8 holds, Lemma 6.13 holds. The boundaries for ρmentioned
in the claim follow from the constraints on g and equation (56)

Case (II) and (III). Since Lemma 6.12 applies we can assume, without loss of
generality, that the positive components of x0 are the first z + 1 (z ∈ {0, 1, ..., n− 2}).
Then we can write

x0 =

[
x1

0

]
, A =

[
A11 A12

A21 A22

]
with x1 > 0, x1 ∈ R

z+1, A11 has order z + 1. Since this part is quite long we divide it
into several steps.

Step (i). We claim that

(g + δx)x
T
1 A12v02 = 0 (58)

so that either g + δx = 0, or A12v02 = v, or both, where (v01,v02) = v0 and v01 has the
same number of components as x1.
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Inequalities (50) – (52) and equation (53) have a nonnegative solution if and only if

ρ+ δx + σg ∈ Z (A,H)

where H is the set of indices corresponding to the positive elements of x0 but index 1
and Z (A,H) is as defined in Lemma 6.14. Since this lemma holds, we have ρ+ δx + σg ∈[
λ−1
PF , a

−1
11

]
which implies

g ∈
[
σ−1

(
λ−1
PF − ρ− δx

)
, σ−1

(
a−1

11 − ρ− δx
)]
. (59)

Equations (51) and (53) are equivalent to

[I− (ρ+ δx + σg)A11]v01 = (ρ+ δx + σg)A12v02 (60)

[I− (ρ+ δx + σg)A22]v02 ≤ (ρ+ δx + σg)A21v01.

Then, by admissibility (Proposition 6.7) we have

xT
0 [I− (g + δx)A] ≥ c0e

T
1 if g + δz ≥ 0

xT
0 (I − δA) − (g + δz) s

T
0 ≥ c0e

T
1 if g + δz < 0

which means, by decomposing,

xT
1 [I− (g + δx)A11] ≥ c0e

T
1

− (g + δx)x
T
1 A12 ≥ 0 (61)

if g + δz ≥ 0, and
xT

1 [I−δA11] − (g + δz) s
T
01 ≥ c0e

T
1

−δxT
1 A12 − (g + δz) s

T
02 ≥ 0

if g+δz < 0. Moreover the equality holds on the positive components of v0, (see Proposition
6.9-(ii), equation (48)) so that, for any sign of g + δz

xT
1 [I− (g + δx)A11]v01 = c1−σ0 (62)

− (g + δx)x
T
1 A12v02 = 0, (63)

where we have also used the result of Proposition 6.7. Then we have the conclusion.

Step (ii). Classification in the case g + δx = 0 .
Let then g = −δx. This implies that (thanks to (59))

λ−1
PF − δx (1 − σ) ≤ ρ ≤ a−1

11 − δx (1 − σ) ;

moreover, by (50) and (62) we get(
xT

1 − c0e
T
1

)
v01 = 0

so that xT
0 e1 = xT

1 e1 = c0 and all the components of v01 but the first one are zero. The
other complementarity conditions of the statement are consequences of (60) and (48)
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Step (iii). Classification in the case when A12v02 = 0 and g + δx < 0.

Now by the first of (60) we get

[I− (ρ+ δx + σg)A11]v01 = 0.

This means that v01 is an eigenvector of A11 with eigenvalue (ρ+ δx + σg)−1. Let us call
this eigenvalue λ0 (obviously λ0 < λPF ). Now let us show that

λ0 = a11,

that the other elements of the first column of A11 (if A11 has order > 1) are zero and
that, as a consequence,

g1 = σ−1
(
a−1

11 − ρ− δx
)
. (64)

We have two possibilities:

• v01 > 0. In this case we prove that A11 has order 1.

Indeed by Proposition 6.9-(ii) we get that

xT
1 [I− (g + δx)A11] = c0e

T
1

but this is impossible when A11 has order > 1, since xT
1 > 0, g + δx < 0 and c0e

T
1

has zero components.

• v01 has some zero components. In this case we prove that A11 is of the type

A11 =

[
a11 F12

0 F22

]

where F12 and F22 are suitable nonnegative matrices.

Indeed assume, without loss of generality, that the zero components of v01 are the
last ones. Then we can write x1 = (x11,x12), v01 = (u,0) with u > 0, and

A11 =

[
F11 F12

0 F22

]
.

Moreover, taking account of the fact that u > 0, we get, by Proposition 6.9-(ii)

xT
11 [I− (g + δx)F11] = c0e

T
1 (65)

which implies, arguing as in the case v01 > 0, that F11 has order 1, so the claim
(64) holds.

Hence

Av0 =


 a11c

−σ
0

0
A21v01 + A22v02


 , a11x

T
0 v0 = xT

0 Av0 = c−σ0 .
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Being g < −δx the above (64) is possible only if

ρ > a−1
11 − δx (1 − σ) .

Moreover, since the unique element of x11 is the scalar xT
0 e1 we have by (65)

xT
0 e1 [1− (g + δx) a11] = c0

which gives

xT
0 e1 =

c0
1− (g + δx) a11

=
σc0

ρa11 − (1 − δxa11) (1 − σ)
.

The other complementarity conditions of the statement are consequences of (60) and (48)

6.5 Steady states and real rate of profits

Until now we never needed to deal with profitability and its rate(s). Since this subsec-
tion is devoted to investigating some macroeconomic insights connected with the model
introduced in this paper, we need to provide these concepts. We deal first with concepts
concerning profitability which can be introduced for all optimal paths. Then we turn to
price supported steady state solutions Let Li(t1, t2) (i = 1, 2, ..., n) be the amount of com-
modity i which can be obtained at time t2 when one unit of commodity i is invested at
time t1 and let L0(t1, t2) be the amount of numeraire which can be obtained at time t2
when one unit of numeraire is invested at time t1. Obviously,

Li(t1, t2) =
L0(t1, t2)e

T
i vt1

eTi vt2

(i = 1, 2, ..., n)

Lj(t, t) = 1 for each t, j = 0, 1, ..., n

Lj(t1, t)Lj(t, t2) = Lj(t1, t2) for each t, j = 0, 1, ..., n

This allows us to define (for all t1 and t2)

rj(t) :=
∂Lj(t1,t)

∂t

Lj(t1, t)
= −

∂Lj(t,t2)

∂t

Lj(t, t2)
j = 0, 1, ..., n

The pure number ri(t) (i = 1, 2, ..., n) is known in the literature as the ”own rate of return
of commodity i” (see, for instance, [23]), whereas r0(t) will be called here the ”nominal
rate of interest”. Obviously

rj(t) = r0(t) −
eTj v̇t

eTj vt

(66)

which recalls the Fisher equation linking the nominal rate of interest, the real rate of
interest, and the inflation rate. It is easily seen that

r0(t) = ρ. (67)
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To prove this assume first that t2 is such that in the range [t, t2] commodity h is produced
(x̂T

τ eh > 0, each τ ∈ [t, t2]). Then L0(t, t2) must satisfy the following equation (if the unit
of numeraire is invested in the production of commodity h):∫ t2

t

eThvτ

eThAvt

L0(τ, t2)e
δx(t−τ)dτ + e−δx(t2−t)e

T
hAvt2

eThAvt

= L0(t, t2)

that is, ∫ t2

t

eThvτL0(τ, t2)e
−δxτdτ + e−δxt2eThAvt2 = L0(t, t2)e

T
hAvte

−δxt

and differentiating with respect to t

−eThvtL0(t, t2)e
−δxt =

[
eThAv̇t − (r0(t) + δx) e

T
hAvt

]
L0(t, t2)e

−δxt.

Then the result is obtained by noting that in the range [t, t2]

eThvt = (ρ+ δx) e
T
hAvt − eThAv̇t

since (19), (21), and (23) hold. Similarly, if in the range [t, t2] commodity h is not produced
but it exists and is conserved (x̂T

τ Aeh < ŝTτ eh, each τ ∈ [t, t2]). Then L0(t, t2) must
satisfy the following equation (if the unit of numeraire is invested in the conservation of
commodity h):

e−δz(t2−t)
eThvt2

eThvt

= L0(t, t2),

that is,
e−δzt2eThvt2 = L0(t, t2)e

T
hvte

−δzt,

and differentiating with respect to t[
eTh v̇t − (δz + r0(t))e

T
hvt

]
L0(t, t2)e

T
hvte

δzt = 0.

Then the result is obtained by noting that in the range [t, t2]

eTh v̇t = (ρ+ δx)e
T
hvt

since (19), (21), and (23) hold. From (66) and (67), taking account of the costate equation
(19), we obtain

rj(t) = ρ− eTh v̇t

eThvt

=
eThqt

eThvt

− δz

which is the relationship between the price and the rental of an asset which if not used
in production depreciates at rate δz. From it and equation (26) we obtain

ċt
ct

= − 1

σ

eTh v̇t

eThvt

=
r1(t) − ρ

σ

which can be also obtained from equations (20), (66) and (67).
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By definition, in a steady state solution consumption ct and the operation intensities
of all processes xt grow at a common rate g. Moreover, in a steady state solution supported
by the steady state prices and rentals, all the own rates of return are equal since equations
(66) hold. This common rate is also called the ”real rate of profit”, denoted by r. Hence
in the steady state solutions mentioned in the Classification Theorem the relationship
between the (real) rate of profit r and the growth rate g is the usual one contemplated in
the endogenous growth literature:

g =
r − ρ

σ
.

The Classification Theorem can, in fact, be stated in terms of r rather than g:

• if (λ−1
PF − δx)(1 − σ) < ρ < λ−1

PF − δx(1 − σ), then r = λ−1
PF − δx;

• if λ−1
PF − δx(1 − σ) ≤ ρ ≤ a−1

11 − δx(1 − σ), then r = ρ− σδx;

• if a−1
11 − δx(1 − δx) < ρ, then r = a−1

11 − δx.

Let us define R and G as the sets of possible values of r and g, respectively, then R =
[λ−1

PF − δx, a
−1
11 − δx], G = (−∞, λ−1

PF − δx), and

SupG = minR.

This relationship reminds one of the long period models studied in the sixties and seventies
along the lines suggested by von Neumann and Sraffa ([34, pp.486-502] [20, pp.94-276]
and the literature there referred to).

In the von Neumann model, for instance, the consumption is zero (the consumption by
workers is included in the coefficients of matrix A as real wage rates) and the growth rate
equals the profit rate. Hence the rate of profit is determined by technology alone (or, more
precisely, by technology and real wage rates). That is exactly what happens in the model
presented here if ρ, which however is a parameter concerning consumption preferences,
is low enough or high enough. Only if λ−1

PF − δx(1 − σ) ≤ ρ ≤ a−1
11 − δx(1 − σ) does the

rate of profit depend crucially on the parameters concerning consumption preferences; in
this case, however, the rate of growth is determined by a technological parameter only.
The reason is clear. If g > −δx, then all commodities need to be produced and therefore
n processes are to be operated. Thus, the n equations relating prices and rate of profit
relative to the operated processes (the no arbitrage conditions) determine both the n
- 1 relative prices and the real rate of profit. If g < −δx, the only process which is
relevant is the process producing commodity 1. Since the inputs used by this process are
produced by the process itself at a rate larger than the growth rate (as a consequence of the
assumption on depreciation), all these commodities (other than commodity 1) have a zero
price. In other words, production is reduced to the production of commodity 1 by means
of commodity 1 and free goods. Hence, similarly to the case of g > −δx, the equation
relating prices and the rate of profit relative to the operated process of commodity 1 can
determine the rate of profit (apart from commodity 1, all commodities which are either
produced or conserved have a zero price). If g = −δx, then once again the only relevant
process is that producing commodity 1 and the inputs used by this process are produced
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by the process itself, but this is realized at a rate equal to the growth rate and therefore
these commodities (except commodity 1) may have either a positive or a zero price. Those
with a positive price cannot be separately produced or conserved; their existing stocks
can be regarded as stocks of ’renewable’ resources for which a growth rate of −δx can be
granted in the production of commodity 1.

For optimal steady states with a growth rate larger than −δx the rate of growth is
determined as in the simple one-sector AK model with the von Neumann rate of profit
replacing the coefficient A. Thus, to study these paths ’no fancy mathematics from the
calculus of variations is needed, much less an appeal to Pontryagin’ ([22, p.11], see also
[30]). We note, however, that the existence of such a structure in the set of the steady
states is simply the way in which the Non-substitution Theorem - introduced in 1951 by
Arrow, Georgescu-Roegen, Koopmans, and Samuelson) (see [20, pp.26-8, 151-2, 270] and
the literature there referred to) - operates in the present endogenous growth framework.
In fact the Non-substitution Theorem informs us that in the interior of the production set,
even if there is more than one process for each commodity to be produced, the long run
supply curves are horizontal at the prices (and the rate of profit) given by the dominant
technique (that is the set of n processes, one for each commodity to be produced, which
can pay the largest rate of profit). This means that the preference side of the model
can affect prices at the boundary of the production set, but if all processes are positively
operated, then the long run equilibrium prices (and the rate of profit) are determined from
the production side of the model only. In this case the role of preferences (including ρ),
is to determine the growth rate (and, when more than one commodity can be consumed,
the proportions in which commodities are consumed). In the present model the Non-
substitution Theorem implies that the rate of profit and prices are independent of the
growth rate, provided it is larger than −δx. However, when it has been established that
the case in which the growth rate is lower than −δx is equivalent to the case in which
commodity 1 is produced by itself (and free goods) alone, then the Non-substitution
Theorem can be invoked again to assert that the rate of profit is independent of the
growth rate, also when the growth rate is lower than, but not equal to −δx.

The cases of optimal steady states with a growth rate lower than or equal to −δx are
a consequence of the assumption on depreciation. Without a depreciation by evaporation
they could not exist. However, their relevance is not to be underestimated. It is interesting
that with a high rate of time preference the consumer exploits the stocks of ’renewable’
resources and with an even higher rate the consumer exploits not only these stocks, but the
capital stocks themselves. (If the reader allows us to use this model for an interpretation
of real phenomena, we can say that in a country in which the political leadership is
highly dubious about its ability to preserve its rule and, as a consequence, has a high
rate of time preference, it will concentrate production in exploiting the stocks of natural
resources and the growth rate will be very low or even negative, whereas in a country in
which the political leadership has an even higher rate of time preference, it will concentrate
production not only in exploiting the stocks of natural resources but also in exploiting the
previously accumulated capital and the growth rate will be lower and certainly negative.)
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A Proof of the existence theorem

We now prove the above Theorem 3.1 about existence of optimal strategies. The proof uses
quite straightforward compactness arguments but they are combined in a non-standard
way and, to our knowledge, the results given in the literature do not apply to this case (see
[11] and [32] for similar results). For this reason we give a complete proof. Troughout this
subsection we will assume that Assumptions 2.2 and 2.3 hold true without mentioning
them. We will clarify when other assumptions are used.

We start giving some preliminary results that will be useful in the following.

Lemma A.1 The set of admissible control strategies is convex and the functional Uσ is
strictly concave with respect to the argument c.

Proof. It is immediate and we omit it: see Appendix B for related results (Lemma
B.1 and Proposition B.2).

Now we prove the following useful estimates (see [15, p.30] for analogous arguments
in the one-dimensional case). Recall that vPF is the Frobenius right eigenvector of A and
so vPF > 0.

Lemma A.2 Let σ > 0. For every 0 ≤ t ≤ τ < +∞, s̄ ∈ R
n, s̄ ≥ 0 we have, for every

admissible control strategy (x, c) ∈ A(̄s),

sTτ vPF ≤ e(λPF−1−δx)(τ−t)sTt vPF , (68)

and, for η ∈ R

∫ τ

t

e−ηssTs vPFds ≤ sTt vPF e
−(λ−1

PF−δ
x)t
e(λ

−1
PF−δ

x
−η)τ − e(λ

−1
PF−δ

x
−η)t

λ−1
PF − δx − η

; η �= λ−1
PF − δx∫ τ

t

e−ηssTs vPFds ≤ sTt vPF e
−(λ−1

PF−δ
x)t (τ − t) ; η = λ−1

PF − δx (69)

and, setting I(t, τ) :=
∫ τ

t
csds,

I(t, τ) + λPF
(
xT
τ vPF

)
≤ e(λ

−1
PF−δx)(τ−t)sTt vPF , (70)

and also

λPFxT
τ vPF e

−ητ +

∫ τ

t

e−ηscsds ≤ e−ηtsTt vPF e
(λ−1

PF−δ
x
−η)

+
(τ−t) (71)

Moreover, setting a = ρ−
(
λ−1
PF−δx

)
(1 − σ) we have for σ ∈ (0, 1)∫ τ

t

e−ρsc1−σs ds (72)

≤ e−ρt[sTt vPF ]1−σ
[
(τ − t)σe−a(τ−t) + [ρ]+

∫ τ

t

(s− t)σe−a(s−t)ds

]
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while, for σ ∈ (1,+∞) ∫ τ

t

e−ρsc1−σs ds (73)

≥ (τ − t)σ e−ρt
(
sTt vPF

)1−σ
e(1−σ)( a

σ−1)
+

(τ−t)

and, for σ = 1∫ τ

t

e−ρs log csds ≤ e−ρτ (τ − t)

[(
λ−1
PF−δx

)
(τ − t) + log

sTt vPF

(τ − t)

]
(74)

+ [ρ]+
∫ τ

t

e−ρs (s− t)

[(
λ−1
PF−δx

)
(s− t) + log

sTt vPF

(s− t)

]
ds

Proof. We prove the seven inequalities (68)–(74) in order of presentation.

1. First we observe that, by multiplying the state equation (4) by vPF we obtain

ṡTt vPF = −δzsTt vPF+(1 − δλPF )xT
t vPF−ct t ∈ (0,+∞), (75)

sT0 vPF = s̄TvPF ≥ 0

Moreover, the constraint sTt ≥ xT
t A becomes sTt vPF ≥ λPFxT

t vPF so that, from
(75), from the fact that 1 − δλPF > 0 (consequence of Assumption 2.3), and from
the nonnegativity of c, we get

ṡTs vPF ≤
(
λ−1
PF − δx

)
sTs vPF−cs ≤

(
λ−1
PF − δx

)
sTs vPF s ∈ (0,+∞), (76)

and so, by integrating on [t, τ ] and using the Gronwall lemma (see e.g. [3, p. 218])
we get the first claim (68).

2. To prove inequality (69) we multiply the inequality (68) by e−ηs and integrate. We
obtain for η �= λ−1

PF − δx∫ τ

t

e−ηssTs vPFds ≤
∫ τ

t

e−ηse(λ
−1
PF−δ

x)(s−t)sTt vPFds

= sTt vPF e
−(λ−1

PF−δ
x)t

∫ τ

t

e(λ
−1
PF−δ

x
−η)sds

= sTt vPF e
−(λ−1

PF−δ
x)t
e(λ

−1
PF−δ

x
−η)τ − e(λ

−1
PF−δ

x
−η)t

λ−1
PF − δx − η

whereas if η = λ−1
PF − δx we have∫ τ

t

e−ηssTs vPFds ≤
∫ τ

t

e−ηse(λ
−1
PF−δ

x)(s−t)sTt vPFds

= sTt vPF e
−(λ−1

PF−δ
x)t (τ − t) .
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3. For the third claim (70) we observe that, from (76)

0 ≤ cs ≤
(
λ−1
PF − δx

)
sTs vPF − ṡTs vPF ∀s ∈ [t, τ ] (77)

so that, by integrating on [t, τ ]

0 ≤ I(t, τ) =

∫ τ

t

csds ≤
(
λ−1
PF − δx

) ∫ τ

t

sTs vPFds− sTτ vPF + sTt vPF

and from the inequalities (68) and λPFxT
τ vPF≤ sTτ vPF

I(t, τ) ≤
∫ τ

t

(
λ−1
PF − δx

)
e(1/λPF−δx)(s−t)sTt vPFds− λPFxT

τ vPF + sTt vPF

= e(λ
−1
PF−δ

x)(τ−t)sTt vPF − λPFxT
τ vPF

which gives the third claim (70).

4. The fourth claim (71) easily follows by multiplying both sides of (77) by e−ηs and
then integrating. In fact we have

0 ≤ e−ηscs ≤ e−ηs
[(
λ−1
PF − δx

)
sTs vPF − ṡTs vPF

]
∀s ∈ [t, τ ]

and integrating and using that λPFxT
τ vPF≤ sTτ vPF∫ τ

t

e−ηscsds ≤
∫ τ

t

e−ηs
[(
λ−1
PF − δx

)
sTs vPF − ṡTs vPF

]
ds

=

∫ τ

t

e−ηs
(
λ−1
PF − δx

)
sTs vPFds

−e−ητsTτ vPF + e−ηtsTt vPF

−η
∫ τ

t

e−ηssTs vPFds

≤ e−ηtsTt vPF − e−ητλPFxT
τ vPF

+
(
λ−1
PF − δx − η

) ∫ τ

t

e−ηssTs vPFds

Now, if η ≥ λ−1
PF − δx the above inequality implies∫ τ

t

e−ηscsds+ e−ητλPFxT
τ vPF ≤ e−ηtsTt vPF

while, for η < λ−1
PF − δx we get, by using (69),∫ τ

t

e−ηscsds+ e−ητλPFxT
τ vPF ≤ e−ηtsTt vPF +

(
λ−1
PF − δx − η

) ∫ τ

t

e−ηssTs vPFds

≤ e−ηtsTt vPF + sTt vPF e
−(λ−1

PF−δ
x)t

[
e(λ

−1
PF−δ

x
−η)τ − e(λ

−1
PF−δ

x
−η)t

]
= e−ηtsTt vPF e

(λ−1
PF−δ

x
−η)(τ−t)

which gives the fourth claim (71)
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5. Concerning the fifth inequality (72) setting (see e.g. [15, p. 30])

h(t, s) =

∫ s

t

c1−σr dr

we have, by Jensen’s inequality, for σ ∈ (0, 1)

h(t, s) ≤ (s− t)

[
1

s− t

∫ s

t

crdr

]1−σ
= (s− t)σI(t, s)1−σ (78)

Now, integrating by parts we obtain (this holds in fact for σ > 0, σ �= 1),∫ τ

t

e−ρsc1−σr ds =
[
e−ρsh(t, s)

]τ
t

+

∫ τ

t

ρe−ρsh(t, s)ds (79)

= e−ρτh(t, τ) +

∫ τ

t

ρe−ρsh(t, s)ds.

If we apply the inequality (70) to (78) we obtain

h(t, s) ≤ (s− t)σe(1−σ)(λ−1
PF−δx)(s−t)[sTt vPF ]1−σ

which yields, together with (79), ∫ τ

t

e−ρsc1−σs ds

≤ e−ρτ (τ − t)σe(1−σ)(λ−1
PF−δx)(τ−t)[sTt vPF ]1−σ

+ [ρ]+
∫ τ

t

e−ρs(s− t)σe(1−σ)(λ−1
PF−δx)(s−t)[sTt vPF ]1−σds

= e−ρt(τ − t)σe−a(τ−t)[sTt vPF ]1−σ + [ρ]+ e−ρt[sTt vPF ]1−σ
∫ τ

t

(s− t)σe−a(s−t)ds

which gives the claim.

6. To prove inequality (73) for the case when σ ∈ (1,+∞) we apply directly the Jensen
inequality to the integral

∫ τ

t
e−ρsc1−σs ds. In fact∫ τ

t

e−ρsc1−σs ds = (τ − t)
1

τ − t

∫ τ

t

(
e−

ρ
1−σ

scs

)1−σ
ds

≥ (τ − t)

[
1

τ − t

∫ τ

t

e−
ρ

1−σ
scsds

]1−σ

= (τ − t)σ
[∫ τ

t

e−
ρ

1−σ
scsds

]1−σ
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so that, by inequality (71) with η = ρ
1−σ we get , (recalling that λ−1

PF − δx − ρ
1−σ =

a
σ−1

) ∫ τ

t

e−ρsc1−σs ds ≥ (τ − t)σ
[∫ τ

t

e−
ρ

1−σ
scsds

]1−σ

≥ (τ − t)σ
[
e−

ρ
1−σ

tsTt vPF e
( a

σ−1)
+

(τ−t)
]1−σ

= (τ − t)σ e−ρt
(
sTt vPF

)1−σ
e(1−σ)( a

σ−1)
+

(τ−t)

Note that for the case σ ∈ (0, 1) we are interested in an estimate from above giving
finiteness of the value function for a > 0 (so we need terms that remain bounded
when t→ +∞), while for the case σ ∈ (1,∞) we are interested in an estimate from
below giving the value function equal to −∞ when a ≤ 0, (so we need terms that
explode when t → +∞). These different targets require to use different estimates
with different methods of proof. Of course, both methods can be applied to both
cases yielding however estimates that are not useful for our target.

7. Inequality (74) follows by similar arguments. In fact, calling

h(t, s) =

∫ s

t

log crdr

we have, because of Jensen’s inequality

h(t, s) ≤ (s− t) log

[
1

s− t

∫ s

t

crdr

]
= (s− t) [− log (s− t) + log I (t, s)] . (80)

Now, integrating by parts as in (79), we obtain∫ τ

t

e−ρs log csds = e−ρτh(t, τ) +

∫ τ

t

ρe−ρsh(t, s)ds. (81)

which, together with (80) and (70), gives∫ τ

t

e−ρs log csds

≤ e−ρτ (τ − t) log

[
1

τ − t
I (t, τ)

]
+

∫ τ

t

[ρ]+ e−ρs(s− t) log

[
1

s− t
I (t, s)

]
ds

≤ e−ρτ (τ − t) log

[
1

τ − t
e(λ

−1
PF−δx)(τ−t)sTt vPF

]

+ [ρ]+
∫ τ

t

e−ρs(s− t) log

[
1

s− t
e(λ

−1
PF−δx)(s−t)sTt vPF

]
ds

= e−ρτ (τ − t)

[
(λ−1

PF − δx)(τ − t) + log
sTt vPF

τ − t

]

+ [ρ]+
∫ τ

t

e−ρs(s− t)

[
(λ−1

PF − δx)(s− t) + log
sTt vPF

s− t

]
ds
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which completes the proof.

Remark A.3 We observe that, due to the strict positivity of vPF (which comes from
indecomposability of A), the above estimates are in fact estimates on every component
of the vectors st, xt. This will be useful in the rest of the section. In particular from the
above Lemma A.1 we can derive conditions for the functional Uσ to be well defined and
finite for every admissible strategy when σ ∈ (0, 1] and Assumption 2.7 holds, i.e. a > 0,
and for Uσ to be −∞ for every admissible strategy when σ ∈ (1,+∞) and a ≤ 0 .

The following corollary is immediate (using estimates (72) (73), (74) and, when a > 0,

that
∫ +∞

0
sσe−as ds = Γ(1+σ)

a1+σ ) and gives a first part of Theorem 3.1.

Corollary A.4 Let Assumption 2.7 hold, i.e. a > 0. Then, for any s ≥ 0 we have, for
σ ∈ (0, 1) and (x, c) ∈ A(s),

0 ≤ Uσ(c) ≤
ρ

1 − σ

[
s̄TvPF

]1−σ
∫ +∞

0

sσe−as ds

=
ρ

1 − σ

Γ(1 + σ)

a1+σ

[
s̄TvPF

]1−σ

while, for σ = 1

Uσ(c) ≤ ρ

∫ +∞

0

e−ρss

[(
λ−1
PF−δx

)
s+ log

s̄TvPF

s

]
ds

and, for σ > 1
Uσ(c) ≤ 0.

Moreover, if a ≤ 0, then for σ > 1, and for σ = 1 and λ−1
PF−δx = 0 every admissible

strategy satisfies Uσ(c) = −∞.

This result show, in particular, that, when a > 0 and σ ∈ (0, 1), the intertemporal
utility functional Uσ(c) is finite and uniformly bounded for every admissible production-
consumption strategy (while for σ ≥ 1 it is only bounded from above). In the case when
a ≤ 0, σ > 1, there are no optimal strategies.

We now have the following result.

Corollary A.5 Let Assumption 2.7 do not hold., i.e. a ≤ 0. Let either σ ∈ (0, 1) or
σ = 1 and λ−1

PF − δx > 0. Then, given any s > 0 we can find an admissible strategy
(x, c) ∈ A(s) such that Uσ(c) = +∞. If on the other hand a > 0 and σ ≥ 1, then there
exists an admissible strategy with Uσ(c) > −∞.
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Proof. Let first a ≤ 0 and σ ∈ (0, 1]. Take a positive decreasing function α :
[0,+∞) �−→ [0,+∞) defined as α(t) = α0 (1 + t)−γ for suitable α0 > 0 and γ > 0 (to

be fixed later on). Set xt = α(t)e(λ
−1
PF−δx)tsPF and ct = −λPFα′(t)e(λ

−1
PF−δx)t (recall that

sPF is the left positive eigenvector of A with the first component equal to 1). Then the
associated solution of the state equation (4) is given by:

sTt = e−δzts̄T+

∫ t

0

e−δz(t−s)xT
s [I − δA] ds−

∫ t

0

e−δz(t−s)cse
T
1 ds

= e−δzt
[
s̄T+sTPF (1 − δλPF )

∫ t

0

α(s)e(λ
−1
PF−δ)sds+ eT1

∫ t

0

λPFα
′(s)e(λ

−1
PF−δ)sds

]
Integrating by parts the first integral becomes:

(1 − δλPF )

∫ t

0

α(s)e(λ
−1
PF−δ)sds

= λPF

[
α(t)e(λ

−1
PF−δ)t − α0 −

∫ t

0

α′(s)e(λ
−1
PF−δ)sds

]

so that

sTt = e−δzts̄T + λPF sTPFα(t)e(1/λPF−δx)t − λPF sTPFα0e
−δzt

+e−δztλPF
[
−sTPF + eT1

] ∫ t

0

α′(s)e(1/λPF−δ)sds

= xT
t A+e−δzt

[
s̄T − α0λPF sTPF

]
+ λPF e

−δzt [−sTPF + eT1
] ∫ t

0

α′(s)e(1/λPF−δx)sds

It is clear that the constraints sTt ≥ xT
t A are satisfied if

s̄T − α0λPF sTPF ≥ 0;

which is always possible by taking α0 sufficiently small (since s̄ >0).
Now we observe that the above strategy is admissible but we have, for σ ∈ (0, 1),

Uσ(c) =
1

1 − σ

∫ +∞

0

e−ρsc1−σs ds =
λ1−σ
PF

1 − σ

∫ +∞

0

e−ρs(−α′(s))1−σe(λ
−1
PF−δx)(1−σ)sds

=
λ1−σ
PF (γα0)

1−σ

1 − σ

∫ +∞

0

e−as(1 + s)(−1−γ)(1−σ)ds ≥ (γα0)
1−σ

1 − σ

∫ +∞

0

(1 + s)(−1−γ)(1−σ)ds

and the last integral is infinite if γ < σ
1−σ ). Moreover, for σ = 1

Uσ(c) =

∫ +∞

0

e−ρs log csds =

∫ +∞

0

e−ρs
(
log λPF (−α′ (s)) e(λ

−1
PF−δx)s

)
ds.
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If λ−1
PF −δx > 0 the function e−ρs log λPF (−α′ (s)) e(λ

−1
PF−δx)s is locally bounded, definitely

positive, and goes to +∞ for s→ +∞. Then Uσ(c) = +∞.

Let a > 0 and σ ∈ [1,+∞). We observe that the strategy xt = α(t)e(λ
−1
PF−δx)tsPF

and ct = −λPFα′(t)e(λ
−1
PF−δx)t with α(t) = α0 (1 + t)−γ, γ > 0, s̄T − α0λPF sTPF ≥ 0, is

still admissible (since admissibility does no depend on the value of σ. We then have, for
σ ∈ (1,+∞)

Uσ(c) =
1

1 − σ

∫ +∞

0

e−ρsc1−σs ds =
λ1−σ
PF

1 − σ

∫ +∞

0

e−ρs(−α′(s))1−σe(λ
−1
PF−δx)(1−σ)sds

=
λ1−σ
PF (γα0)

1−σ

1 − σ

∫ +∞

0

e−as(1 + s)(−1−γ)(1−σ)ds.

Since a > 0 the integral is finite irrespective of the value of γ > 0. For σ = 1 we have

Uσ(c) =

∫ +∞

0

e−ρs log csds =

∫ +∞

0

e−ρs
(
log

(
λPF (−α′ (s)) e(λ

−1
PF−δx)s

))
ds

=

∫ +∞

0

e−ρs
(
log

(
λPFα0γ(1 + s)−1−γe(λ

−1
PF−δx)s

))
ds.

Since the function log
[
λPFα0γ(1 + s)−1−γe(λ

−1
PF−δx)s

]
is less than polinomially growing

and ρ = a > 0 then the integral above is finite, so Uσ(c) > −∞.

Remark A.6 We observe that, in the case when a ≤ 0, even if the supremum of the
intertemporal utility Uσ is infinite, the optimal control problem could be studied in a
similar way by using more general concepts of optimality for infinite horizon control
problem (e.g the overtaking optimality: see [32, pp. 231-233]). We will not do it here for
simplicity. So we will always assume a > 0.

We now prove the existence (and uniqueness) result for optimal strategies when a > 0.
We use compactness for weak topologies, see for a reference on this e.g. [8] or [35].

Lemma A.7 Assume that a > 0. Then there exists an optimal production-consumption
strategy (x, c) maximizing Uσ. This strategy is unique in the sense that, if (x̂, ĉ) is another
optimal strategy, then ĉ = c a.e..

Proof. We give the proof for the case σ ∈ (0, 1) as the other cases are completely
analogous. Let a > 0 and s̄ ≥ 0 be the initial datum (here we do not need strict positivity
of s̄). We assume that s̄ �= 0 to avoid degeneracy (it is clear that if s̄ = 0 there is
only one admissible strategy and the problem of existence is trivial). Take a sequence
(xn, cn)n∈N

⊆ A (̄s) of production-consumption strategies such that Uσ (cn) ↗ V (̄s) as
n→ +∞. Then it is clear that, for every n ∈ N and t ≥ 0, we have

sTnt = s̄T+

∫ t

0

xT
ns [I − δA] ds−

∫ t

0

cnse
T
1 ds sTnt ≥ xT

ntA (82)
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By estimate (71) we know that the functions t → fn(t) = c1−σnt belong to the space

L
1/(1−σ)

λ−1
PF−δx

(0,+∞) i.e. the space of functions: (0,+∞) �→ R that, elevated to 1/ (1 − σ)

and multiplied by the weight function e−(λ−1
PF−δx)t are integrable. Moreover, denoting by

|| · ||1/(1−σ),λ−1
PF−δx the norm in this space we have that ||fn||1/(1−σ),λ−1

PF−δx ≤ K s̄TvPF for

a suitable K > 0 independent of n. It follows that (by weak compactness theorems,
see e.g. [8, Ch. 4]), on a subsequence (that we still denote by fn for simplicity of nota-

tion) we have fn → f0 weakly in L
1/(1−σ)

λ−1
PF−δx

(0,+∞), for a suitable f0 ∈ L
1/(1−σ)

λ−1
PF−δx

(0,+∞).

Let us call c0 = f
1/(1−σ)
0 . Clearly c0 ∈ L1

λ−1
PF−δx

(0,+∞). Similarly by estimate (70) we

know that the functions xn ∈ L∞
λ−1

PF−δx
(0,+∞; Rn) and that ||xn||∞,λ−1

PF−δx ≤ λ−1
PF s̄TvPF .

So, as before, there exists x0 ∈ L∞
λ−1

PF−δx
(0,+∞; Rn) such that xn → x0 weakly star in

L∞
λ−1

PF−δx
(0,+∞; Rn). We prove that the strategy (x0, c0) is admissible and optimal.

First it is clear that x0 ≥ 0, and c0 ≥ 0, since the above convergencies preserve the
sign constraints on the limit (see e.g. [8, Ch. 4]).

Second, consider the associated state trajectory s0. It is clear that

sT0t = e−δzts̄T+

∫ t

0

e−δz(t−s)xT
0s [I − δA] ds−

∫ t

0

e−δz(t−s)c0se
T
1 ds

Moreover, by definition of weak star convergence in L∞
λ−1

PF−δx
(0,+∞; Rn) we have that

∫ t

0

e−δz(t−s)xT
0s [I − δA] ds = lim

n→+∞

∫ t

0

e−δz(t−s)xT
ns [I − δA] ds ∀t ≥ 0

and, by the lower semicontinuity of convex functions with respect to the the weak con-
vergence in L

1/(1−σ)

λ−1
PF−δx

(0,+∞),

∫ t

0

e−δz(t−s)c0sds ≤ lim inf
n→+∞

∫ t

0

e−δz(t−s)cnsds

so that, by (82) we have, for almost every t ≥ 0

sT0t ≥ lim sup
n→+∞

sTnt ≥ lim sup
n→+∞

xT
ntA ≥ xT

0tA

where in the last inequality we have still used the properties of the weak star convergence
in L∞

λ−1
PF−δx

(0,+∞; Rn). This gives admissibility of (x0, c0). The optimality easily follows

by the concavity of Uσ which implies the weak upper semicontinuity, so that

sup
c∈A(̄s)

Uσ (c) = lim sup
n→+∞

Uσ (cn) ≤ Uσ(c0)

Finally the uniqueness property follows from the strict concavity of Uσ.

The statement of Theorem 3.1 follows then from Corollary A.4, Corollary A.5 and
Lemma A.7.
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B The value function

Here we study the problem by the dynamic programming method obtaining some results
that are needed to prove the optimality conditions in the form given in Theorems 5.1 and
5.3 in Section 5 (see e.g. [3] or [36] for an introduction to the subject) and for the steady
states’ classification theorem in Subsection 6.4 . We will not give all the proof, for brevity.
A complete mathematical treatment will be the subject of a more mathematical paper.

We start by a simple result about the class A(s) of admissible trajectories starting
at a given s. Recall that

• given a subset A of some real vector space and α ∈ R we define

αA := {αa : a ∈ A} ;

• given subsets A,B of some real vector space and α, β ∈ R we define

A + B := {a+ b : a ∈ A, b ∈ B}
αA + βB := {αa+ βb : a ∈ A, b ∈ B}

Lemma B.1 Let Assumptions 2.2, 2.3 hold. Then A(s) is a closed and convex subset of
L∞

loc (0,+∞; Rn) × L1
loc (0,+∞; R). Moreover, for α > 0, s̄ ∈R

n
+

A (αs) = αA(s)

and, for every s̄1, s̄2 ∈ R
n
+, α ∈ (0, 1)

s̄1 ≤ s̄2 =⇒ A(s1) ⊆ A(s2) (83)

A(s1) + A(s2) ⊆ A (s1 + s2) (84)

A(s1) ∪ A(s2) ⊆ A (s1 + s2)

αA(s1) + (1 − α)A(s2) ⊆ A (αs1 + (1 − α) s2) (85)

Proof. We omit the proof, since it is immediate from the definitions. �
The value function for the problem (Pσ) has been defined in (7). The following propo-

sition gives some of its properties.

Proposition B.2 Let Assumptions 2.2, 2.3, 2.7 hold. Then

(i) For every s > 0 we have for σ ∈ (0, 1)

0 ≤ V (s) ≤ ρ

1 − σ

Γ(1 + σ)

a1+σ

[
s̄TvPF

]1−σ

while, for σ = 1

−∞ < V (s) ≤ ρ

∫ +∞

t

e−ρss

[(
λ−1
PF−δx

)
s+ log

s̄TvPF

s

]
ds

and, for σ ∈ (1,+∞)

−∞ < V (s) ≤ ρ

1 − σ

Γ(1 + σ)

a1+σ

[
s̄TvPF

]1−σ ≤ 0
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(ii) V is increasing in the sense that

s̄1 ≤ s̄2 =⇒ V (̄s1) ≤ V (̄s2) ∀s̄1, s̄2 ∈ R
n
+

(iii) For σ �= 1 V is (1 − σ)-homogeneous in the sense that

V (αs̄) = α1−σV (̄s) ∀α > 0, s̄ ∈R
n
+ (86)

and for σ = 1
V (αs̄) = ρ−1 logα+ V (̄s) ∀α > 0, s̄ ∈R

n
+ (87)

(iv) V is locally Lipschitz continuous on the open positive orthant IntRn
+ (and continuous

at the boundary if σ ∈ (0, 1)) and concave.

(v) V is two times differentiable a.e. on R
n
+ and ∇V ≥ 0 at every point of differen-

tiability (the first component is strictly positive). Moreover V admits non-empty
superdifferential at every point of IntRn

+ and D+V (̄s) ⊆ R
n
+ for every s̄ ∈IntRn

+.

Proof.
Proof of (i). This is a consequence of the Assumption 2.7 and easily follows by the

Lemma A.2.
Proof of (ii). This a direct consequence of (83).
Proof of (iii). Since A (αs) = αA(s) we have, when σ �= 1,

V (αs̄) = sup
(x,c)∈A(αs)

∫ +∞

0

e−ρt
c1−σt

1 − σ
dt = sup

(x,c)∈A(s)

∫ +∞

0

e−ρt
[αct]

1−σ

1 − σ
dt = α1−σV (̄s)

The case when σ = 1 is completely analogous and therefore omitted.
Proof of (iv). For α ∈ (0, 1) we have

αV (s1) + (1 − α)V (s2)

= α sup
(x,c)∈A(s1)

∫ +∞

0

e−ρt
c1−σt

1 − σ
dt+ (1 − α) sup

(x,c)∈A(s2)

∫ +∞

0

e−ρt
c1−σt

1 − σ
dt

= sup
(x1,c1)∈A(s1),
(x2,c2)∈A(s2)

∫ +∞

0

e−ρt
αc1−σ1t + (1 − α) c1−σ2t

1 − σ
dt

≤ sup
(x1,c1)∈A(s1),
(x2,c2)∈A(s2)

∫ +∞

0

e−ρt
[αc1t + (1 − α) c2t]

1−σ

1 − σ
dt

where in the last inequality we have used the concavity of the instantaneous utility uσ.
The latter implies, because of (85), that

αV (s1) + (1 − α)V (s2) ≤ sup
(x,c)∈A(αs1+(1−α)s2)

∫ +∞

0

e−ρt
c1−σt

1 − σ
dt
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= V (αs1 + (1 − α) s2)

which gives the concavity.
The Lipschitz continuity in the interior follows by applying standard results on con-

cave functions (see e.g. [12], [29]) while on the boundary one needs to use the definition
of V and argue as in the proof of Lemma A.7; this part is not trivial but we omit it for
brevity.

Proof of (v). This part follows directly from the concavity via the so-called Alexandroff
Theorem (see e.g. [13]) and from the monotonicity via the definition of subdifferential. �

The following Proposition is a standard version of a general result for control problems
and is known as the Bellman Optimality Principle or Dynamic Programming Principle
(see e.g. [6], or [3, 15],).

Proposition B.3 Let Assumptions 2.2 ,2.3, 2.7 hold. For every t ≥ 0 we set At(s) as
the set of control strategies that satisfies all the constraints on (x, c) and s up to time t,
and

Jt (x, c) =

∫ t

0

e−ρs
c1−σs

1 − σ
ds+ e−ρtV

(
st,̄s,(x,c)

)
Then, for every (x, c) ∈ A(̄s) the function t → g (t) = Jt (x, c) is nonincreasing and we
have, for every t ≥ 0

V (̄s) = sup
(x,c)∈At (̄s)

Jt (x, c) (88)

Moreover, if (x, c) is optimal for (Pσ) then its restriction to [0, t] is optimal for the problem
(Pt,σ) of maximizing Jt (x, c) and the function t→ g (t) is constant.

Proof. The proof is standard (see e.g. [3]) and we omit it. �

The Hamilton-Jacobi equation associated with our problem is

ρu(s) = H0(s,∇u(s)) ∀s ≥ 0. (89)

where we recall that the maximum value Hamiltonian H0 is given in Section 4.
Using the Dynamic Programming Principle (88) and some regularity assumption on

the problem one can prove (sse e.g. [13, 30]) that the value function V is the unique solution
of the above equation in the sense of viscosity solutions. However these assumptions are
not verified in this context, so a weaker result holds (see [16] and also [4] for related
results). Anyway in this work we are not interested in this problem. We state below what
we need (see [16, 10] for a proof).

Proposition B.4 Let Assumptions 2.2 ,2.3, 2.7 hold. Then the value function V is a
viscosity solution of the equation (89) in the sense introduced in [18]. Moreover it is also
a bilateral solution in the sense defined in [3, p. 133]. In particular, for every s > 0,
a ∈D+V (s) we have

ρV (s) = H0(s, a)

Moreover V is always continuously differentiable with respect to the first variable when
sTe1 > 0. In the case when n = 2, V is continuously differentiable on IntR2

+.
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We observe that (see e.g. [3, p. 133]) from the dynamic programming principle (Propo-
sition B.3) the following optimality condition follows: a control strategy (x̂,ĉ) ∈ A(̄s) is
optimal for the problem (Pσ) if and only if the function

g (t) =

∫ t

0

e−ρs
ĉ1−σs

1 − σ
ds+ e−ρtV (̂st)

is nondecreasing for t ≥ 0. This fact, together with Proposition B.4 above implies the
following necessary condition of optimality.

Proposition B.5 Let Assumptions 2.2 ,2.3, 2.5 and 2.7 hold. Assume also that (x̂,ĉ) ∈
A(̄s) is optimal for the problem (Pσ) and let ŝ be the corresponding optimal state. Then,
for a.e. t ≥ 0, for every a ∈ D+V (̂st)[

ĉ1−σs

1 − σ
− ρV (̂st) +

(
˙̂st

)T

a

]
= 0

i.e.

x̂T
t [I−δA] a−ĉteT1 a +

ĉ1−σt

1 − σ
= ρV (̂st)

and also
x̂T
t [I−δA] a = sup

x≥0,xT A≤sT
t

{
xT [I − δA]a

}
(90)

−ĉteT1 a +
ĉ1−σt

1 − σ
= sup

c≥0

{
−ceT1 a +

c1−σ

1 − σ

}
. (91)

Proof. It follows using Proposition B.2 and applying the same argument of [4] and [33]
(see also [3, p.133-136]) adapted to this case. We omit it for brevity.

The following corollary will be useful in proving optimality conditions.

Corollary B.6 Let Assumptions 2.2 ,2.3, 2.5 and 2.7 hold. Assume also that (x̂,ĉ) ∈
A(̄s) is optimal for the problem (Pσ) and let ŝ be the corresponding optimal state. Then,
we have

(i) for every t ≥ 0 ĉt is continuous and strictly positive and

ĉ−σt = D1V (̂st)

(ii) for every t ≥ 0
ŝt > 0.

Proof. The point (i) follows from the above Proposition B.5 and from the continuous
differentiability of V in the direction e1.

To prove the point (ii) we look first at the goods not used for consumption: the fact
that ŝTt ej > 0 for j = 2, ..., n is an obvious consequence of the state equation and of the
constraints and holds for every admissible trajectory. Indeed

ṡTt = xT
t [I − δA] − δzs

T
t − cte

T
1 ; s0 = s̄
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with the constraints
xt ≥ 0; sTt ≥ xT

t A; ct ≥ 0.

implies that, if δ ≥ 0
ṡTt ≥ xT

t I − δxs
T
t − cte

T
1 ; s0 = s̄

which gives, for j = 2, ..., n,
ṡTt ej ≥ −δxsTt ej

so that
sTt ej ≥ e−δxts̄Tej.

Now, if δ < 0 then we have −δxTA ≥ 0 so that

ṡTt ≥ −δzsTt − cte
T
1 ; s0 = s̄

which gives, for j = 2, ..., n,
sTt ej ≥ e−δzts̄Tej.

and the claim follows.
Regarding the first component ŝTt e1 we first observe that the constraint s ≥ xTA

and the Assumption 2.6 gives, for every admissible trajectory xT
t e1 ≤

(
sTt e1

)
/a11. Since

the state equation gives

ṡTt ≤ xT
t [I−δxA] − cte

T
1 ; s0 = s̄

then
ṡTt e1 ≤

(
sTt e1

)
/a11 − δxx

T
t Ae1 − ct

so that, for every t1 < t2
sTt2e1 ≤ e(t2−t1)/a11sTt1e1.

This implies that, if sTt1e1 = 0, then sTt2e1 = 0 for every t2 > t1. This implies also that
c = 0 after t1. This behavior is not admissible for σ ≥ 1. Moreover for σ ∈ (0, 1) it cannot
be optimal due to part (i) of this corollary.

C Proof of Theorems 5.1 and 5.3

Here we prove Theorems 5.1 and 5.3 dividing the proof in two subsections: the first about
sufficiency and the second about necessity.

C.1 Sufficient Conditions

To prove sufficient conditions we will suppose that Assumptions 2.2, 2.3 and 2.7 hold
troughout all this subsection even if, as noted in Remark 5.2, they can be considerably
relaxed without big effort. We will not assume 2.5 and 2.6 since they are not needed
here. In fact our sufficient conditions holds under weaker Assumptions than the necessary
ones,also because they do not need the co-state inclusion (25) to establish sufficiency but
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only a consequence of it: the nonnegativity of v (that follows from the monotonicity of
V ).

The proof is given below and follows the method of [32, p. 385, Theorem 11]. However,
the assumptions here are different, due to the singularity at 0 of the istantaneous utility
and to the assumptions on the control strategy. The modifications are quite straightfor-
ward: we give the proof for the reader’s convenience.

Proof of Theorem 5.1. Let (x̂, ĉ) be the above admissible production-consumption
strategy, let ŝ be the associated commodities’ stock trajectory. Let (x, c) be another
admissible strategy starting at the same point s̄. Consider, the quantity

∆ = Uσ(ĉ) − Uσ(c) =

∫ +∞

0

e−ρt
[
ĉ1−σt − c1−σt

1 − σ

]
dt.

We want to prove that ∆ ≥ 0, for every (x, c). To avoid a problem with integrability at
infinity we will take for every θ > 0 the quantity

∆θ =

∫ θ

0

e−ρt
[
ĉ1−σt − c1−σt

1 − σ

]
dt.

Then, by the definition of Hamiltonian we have

∆θ =

∫ θ

0

e−ρt [(H (̂st,vt; x̂t, ĉt) −H (st,vt;xt, ct))

−δzsTt vt + xT
t [I − δA]vt−cteT1 vt−

(
−δTz ŝTt vt + x̂T

t [I − δA]vt − ĉte
T
1 vt

)]
dt

=

∫ θ

0

e−ρt
[
H (̂st,vt; x̂t, ĉt) −H (st,vt;xt, ct) +

(
ṡt − ˙̂st

)T

vt

]
dt. (92)

Now we recall that the conditions (12)—(15) imposed in the statement of the theorem
imply that, for almost every t ≥ 0

x̂t ∈ argmax
{
xT [I − δA]vt; x ≥ 0; xTA ≤ ŝTt

}
;

ĉt ∈ argmax

{
−ceT1 v +

c1−σ

1 − σ
; c ≥ 0

}
(93)

which gives that, for almost every t ≥ 0,

H (̂st,vt; x̂t, ĉt) = H0(̂st,vt) = H01(̂st,vt) +H02(̂st,vt) +H03(vt)

= −δTz ŝTt vt + x̂T
t [I − δA]vt +

σ

1 − σ

(
eT1 vt

)σ−1
σ

so that

H (̂st,vt; x̂t, ĉt) −H (st,vt;xt, ct)

= δz (st−ŝt)
T vt + x̂T

t [I − δA]vt − xT
t [I − δA]vt+H03(vt) −H3(vt,ct).

Now we observe that, by (93), H03(vt) −H3(vt,ct) ≥ 0 for almost every t ≥ 0. Moreover
by the (13), (14) and (15) condition, for almost every t ≥ 0

x̂T
t [I − δA]vt= x̂T

t Aqt= ŝTt qt
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xT
t [I − δA]vt≤ xT

t Aqt≤ sTt qt

which gives for a.e. t ≥ 0.

H (̂st,vt; x̂t, ĉt) −H (st,vt;xt, ct) ≥ −δz (̂st − st)
T vt + (̂st − st)

T qt

Putting this last inequality into (92) we get

∆θ ≥
∫ θ

0

e−ρt
[
(̂st − st)

T qt − δz (̂st − st)
T vt +

(
ṡt − ˙̂st

)T

vt

]
dt. (94)

Integrating by parts we get (using that d
dt
vte

−ρt = e−ρt(−ρvt + v̇t))∫ θ

0

e−ρt
(
ṡt − ˙̂st

)T

vtdt =
[
(st−ŝt)

T vte
−ρt

]θ
0
−

∫ θ

0

(st−ŝt)
T

(
d

dt

(
vte

−ρt)) dt
= (sθ − ŝθ)

T vθe
−ρθ +

∫ θ

0

e−ρt
[
(st − ŝt)

T qt − δz (−ŝt + st)
T vt

]
dt

which implies, by (94)
∆θ ≥ (sθ − ŝθ)

T vθe
−ρθ

which gives, thanks to the positivity of every admissible state trajectory sθ, to condition
(16) (the so-called transversality condition) and to (17) (the nonnegativity of the prices
v)

∆ = lim
θ→+∞

∆θ ≥ lim sup
θ→+∞

(sθ − ŝθ)
T vθe

−ρθ ≥ 0

and the claim follows. �
As we already said, the above theorem is a modified and simplified version of general

sufficient conditions (see e.g. [32, p. 385-389]). It holds true also if we assume that the co-
state v is only piecewise continuous and piecewise differentiable putting suitable conditions
on the jump points.

C.2 Necessary Conditions

We pass now to necessary conditions giving a version of the so-called Maximum Principle
(introduced first in [26]) adapted to our case. Since we are working with a non-standard
problem in optimal control theory, the Theorem 5.3 does not follow directly from results
known in the literature, even if its statement is similar to some of them (we recall in par-
ticular [25, Theorem VI.3.108], [32, Theorem 9 p. 381], [31] and [1]). However a complete
proof of Theorem 5.3 would be very long and technical. For this reason here we will only
sketch the proof focusing on the main differences with [25, Theorem VI.3.108] and [32,
Theorem 9 p. 381] (whose proof is given in [31]).

We point out that [32, Theorem 9 p. 381] assumes that the classical “constraints
qualifications” hold to get absolute continuity of v and to avoid q being a measure. These
classical “constraints qualifications” do not hold in our case, but, using Assumptions 2.5
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and 2.6 we get the positivity of the trajectories that still allows to rule out the measure
case (see [25, Lemma VI.3.100]).

Proof of Theorem 5.3.
First part: proof of (18)–(23).
To prove (18)–(23) we follow the line of the proof of [32, Theorem 9 p. 381] (whose

proof is given in [31] and uses previous results of [25, Section VI.3] for the finite horizon
case) except for the following facts:

1. In [32, Theorem 9 p. 381] it is assumed that the optimal control is locally bounded.
In our case we know that x is locally bounded (thanks to the constraint xTA ≤ s)
but c is only locally integrable. So we need to prove that c is locally bounded.

2. In [32, Theorem 9 p. 381] it is assumed that the so-called “constraints qualifications”
hold. They do not hold in our case, so we need to substitute them with others ([25,
Hypothesis VI.3.98]).

3. The Hamiltonian can be degenerate, i.e. it is defined as

H
(
s, v0,v;x, c

)
= −δzsTv + xT [I − δA]v − ceT1 v + v0 c

1−σ

1 − σ
s,v,x,∈ R

n;

where v0 can be 0 or 1. We need to prove that in our case we can set v0 = 1.

We now briefly show how to prove the above facts in our case.
Proof of 1). It follows from Corollary B.6, part (i). To deal with this lack of local

boundedness one could also use the approach exposed in [11, p. 167, condition c’] (see also
the footnotes at p. 276, 372 in [32]); we have chosen the dynamic programming approach
since it gives rise to other useful results for the study of our problem. For the proof of
optimality conditions via dynamic programming in the case of optimal control problems
without state/control constraints one could see e.g. [3]; however we are not aware of such
kind of results for the case with state/control constraints. (see Appendix B).

Proof of 2). First we observe that the “constraints qualifications” do not hold here.
In fact they require, in our case, that the function:

[0,+∞) �→ R
2n+1; t �→ (̂st, x̂t, ĉt)

satisfies the 2n+ 1 constraints

x̂t ≥ 0; ŝTt − x̂T
t A ≥ 0; ĉt ≥ 0

with at most n equalities for a.e. t ≥ 0. Even if ŝt > 0, ĉt > 0 for a.e. t ≥ 0 this is not
guaranteed in general. It is enough to have some overdetermined constraints in the linear
programming problem (8).

Instead, using that, from Corollary B.6, ŝt > 0, ĉt > 0 for a.e. t ≥ 0, we get that
[25, Hypothesis VI.3.98] holds. Indeed this latter asks that there exists an admissible
production strategy x such that, for any t ≥ 0, xT

t A < ŝt which is clearly true in our case.
Then [25, Lemma VI.3.100] hold true and so v is absolutely continuous.

50



Proof of 3). This is guaranteed by the strict positivity of the optimal control c
coming from Proposition 5.7. In fact, if v0 = 0 then the Hamiltonian H3 would be

H3 (v, c) = −c eT1 v

whose maximum point is always c = 0. Since ĉt ∈ argmax {H3 (v; c) ; c ≥ 0} this would
contradict the optimality of ĉ.

Second part: proof of (24) and (25).
The necessity of the transversality condition (24) and of the co-state inclusion (25) is

not proved in [32, Theorem 9 p.381] nor is it contained in other results in the literature.
We first show how to prove the co-state inclusion: by the Dynamic Programming

Principle we know that for every t ≥ 0 the restriction of (x̂,ĉ) to [0, t] is optimal for the
problem (Pt,σ) of maximizing the functional

Jt (̄s;x,c) =

∫ t

0

e−ρs
c1−σs

1 − σ
ds+ e−ρtV

(
st,̄s,(x,c)

)
under the constraints (for s ∈ [0, t])

ṡTs = −δzsTs + xT
s [I − δA] − cse

T
1

xs ≥ 0; xT
s A ≤ sTs ; cs ≥ 0

((x, c) are bounded on [0, t]). Then we can apply to problem (Pt,σ) the finite horizon
results [25, Section VI.3, Theorem 93, Remark 125], and [25, Section VI.2, Theorem 27,
Remark 39]. The result is that there exist two bounded functions vt and qt : [0, t] �→ R

n

such that vt is absolutely continuous and

v̇t
s = (ρ+ δz)v

t
s − qt

s; on [0, t] ;

vt
t ∈ D+V (̂st)

Then we prove that vt
s ∈ D+V (̂ss) for a.e. s ∈ [0, t] . This is quite hard and we skip it,

one can see e.g. [9, Theorem 3.1] for similar results but in a different context. Next we
pass to the limit for t → +∞ as in [31] getting the existence of the required co-state v.
The stability property of the superdifferential implies then that (25) holds.

The transversality then follows by using an argument similar to the one of [7, Theorem
3.1] and we omit it. �

D Two examples

In this Appendix, we prove, by means of two examples, that the set of supported steady
states given in Definition 6.4 is a proper subset of the set of optimal steady states. Es-
sentially, the examples show that the necessary conditions in Theorem 5.3 cannot be
extended to the boundary of the first orthant even if the optimal path is a steady state
in which production is semipositive. In both examples, the stock of a pure capital good
is zero at t = 0 and, because of the structure of the technology, it cannot be produced at
any time. Since this commodity is also needed in the production of another commodity,
which exists at time 0, in both cases the upper bound of the rate of growth becomes −δx.
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D.1 All commodities required to produce the consumption good
are available, but one of them cannot be produced

Consider a three-sector system with the following data:

σ = 1, A =


 3

2
3
2

0
1 1 1
1 1 1


 , δz = δx < λ−1

PF = 1
3
.

The Classification Theorem tells us that there are the following price supported steady
states

1) For 0 < ρ < 1
3

we have g = 2
3
− δx − ρ

xT
t = c0e

T
1 [I − (1

3
− ρ)A]−1egt, sTt = xT

t A

with the supporting prices

vt = c−1
0 ee−gt, qt = 1

3
c−1
0 ee−gt

2) For 1
3
≤ ρ ≤ 2

3
we have

g = −δx, xT
t = c0e

T
1 e

gt + αeT3 e
gt

sTt = xT
t A + (β + tα)eT3 e

gt

with the supporting prices

vt =
c−1
0

3ρ


 3ρ

2 − 3ρ
y


 e−gt, qt =

c−1
0

3


 3ρ

2 − 3ρ
y


 e−gt

where max
(
0, 2−5ρ

ρ

)
≤ y ≤ 2ρ

1−ρ , α = 0, β = 0 for 1
3
≤ ρ < 2

5
, α ≥ 0, β ≥ 0, αy =

βy = 0 for 2
5
≤ ρ ≤ 2

3
.

3) For ρ > 2
3

we have

g = 2
3
− δx − ρ, xT

t =
2c0
3ρ

eT1 e
gt

st =
c0
δ
e1e

gt +
[(c0

δ
+ α

)
e2 + βe3

]
e−δzt

with the supporting prices

vt = c−1
0


 1

0
y


 e−gt, qt =

2c−1
0

3


 1

0
y


 e−gt

where 0 ≤ y ≤ 2 and αy = 0.
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If we superimpose s̄Te3 = 0, then we still have the price supported steady states
defined in 2) and 3) (obviously with α = β = 0 in 2) and β = 0 in 3)) but we cannot have
the price supported steady state defined in 1). However if s̄T = (h, h, 0) and 0 ≤ ρ < 1

3
,

an optimal solution can be determined and this optimal solution is a steady state optimal
solution. Yet, it is easily shown the there are not price- and rental-vectors supporting it.
In fact, by applying the Theorem 5.1 (taking account of Remark 5.2) to the truncated
problem

max

∫ +∞

0

e−ρt log ctdt

subject to
˙̃s
T

t = x̃te1 − δz s̃
T
t − cte

T
1 , s̃T0 = (h, h)

x̃t ≥ 0, s̃Tt ≥ x̃t

(
3

2
,
3

2

)
, ct ≥ 0

it is easily checked that

ct = 2
3
hegt, xT

t = 2
3
heT1 e

gt,
(
x̃T
t = 2

3
hegt

)
sTt = xT

t A,

(
s̃Tt = x̃t

(
3

2
,
3

2

))
with g = −δx is an optimal steady state solution of the original (truncated) problem and
the price- and rental-vectors supporting the truncated problem are:

ṽt =
1

2hρ

[
3ρ

2 − 3ρ

]
e−gt, q̃t =

1

2h

[
3ρ

2 − 3ρ

]
e−gt

It is easily checked that prices and rentals which are candidates to support the optimal
solution of the original problem need to satisfy

vt =
1

2hρ


 3ρ

2 − 3ρ
0


 e−gt +


 0

0
yt


 , qt =

1

2h


 3ρ

2 − 3ρ
0


 e−gt +


 0

0
wt




where yt and wt need to satisfy the inequalities

wt ≥
2 − 5ρ

2hρ
e−gt, yt ≤

1

h
e−gt + wt

ẏt = (ρ+ δz)yt − wt, wt ≥ 0, yt ≥ 0,

the last inequality being a consequence of the fact that vt need to be in the superdifferential
of V . Since the last but one inequality is satisfied, for 0 ≤ ρ < 1

3
, once the first inequality

is satisfied, it will be ignored here. The above inequalities in yt and wt have a solution if
and only if there is a solution to the system in θt

θ̇t ≤ ρθt −
2 − 5ρ

2hρ
, (95)
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θ̇t ≤ (ρ− 1)θt +
1

h
, (96)

θt ≥ 0. (97)

In fact it is enough to substitute yt = θte
−gt and wt = (ρθt − θ̇)e−gt. Inequality (95)

is binding for 0 ≤ θt ≤ 2−3ρ
2hρ

, whereas inequality (96) is binding for θt ≥ 2−3ρ
2hρ

. Hence

inequalities (95) and (96) are both satisfied only if

θ̇t ≤ −2 − 7ρ+ 3ρ2

2hρ
. (98)

Since, for 0 ≤ ρ < 1
3
, the right hand side of inequality (98) is negative, a function θt

satisfying inequalities (95) and (96) for 0 ≤ ρ < 1
3

is estimated from above by a decreasing
straight line. Hence it cannot satisfy inequality (97) for each t.

D.2 The consumption good is available, but cannot be produced

Consider a three-sector system with the following data:

σ = 1, A =


 1 0 1

1 0 0
1 1 1


 , δz > δx.

If we superimpose s̄Te3 = 0, then xT
t e1 = 0, so that no steady state mentioned in the

Classification Theorem exists. However, if s̄T = (h, k, 0) , then an optimal solution can
be determined for 0 < ρ and this optimal solution is a steady state optimal solution, but
there are not price- and rental-vectors supporting it. In fact, by applying the Theorem
5.1 to the truncated problem

max

∫ +∞

0

e−ρt log ctdt

subject to
˙̃s
T

t = x̃t
[
eT2 − (δx − δz) e

T
1

]
− δz s̃

T
t − cte

T
1

s̃T0 = (h, k) , x̃t ≥ 0, s̃Tt ≥ x̃te
T
1 , ct ≥ 0

it is easily checked that for ρ �= δz − δx (the case in which ρ = δz − δx is slightly different)

ct = ρhegt, xT
t = heT2 e

gt,
(
x̃t = hegt

)
sTt = xT

t A +

{[
k − h

g + δz

]
e−δzt +

h

g + δz
egt

}
eT2(

s̃Tt = x̃te
T
1 +

{[
k − h

g + δz

]
e−δzt +

h

g + δz
egt

}
eT2

)
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with g = − (ρ+ δx) is an optimal steady state solution of the original (truncated) problem
and the price- and rental-vectors supporting the truncated problem are:

ṽt =
1

hρ
e1e

−gt

q̃t =
(δz − δx)

hρ
e1e

−gt.

It is easily checked that prices and rentals which are candidates to support the optimal
solution of the original problem need to satisfy

vt =
1

hρ
e1e

−gt + yte3, qt =
(δz − δx)

hρ
e1e

−gt + wte3

where yt and wt need to satisfy the inequalities

(δx − δz) yt + wt ≥
1

hρ
e−gt, (1 − δx + δz) yt ≤ wt

ẏt = (ρ+ δz)yt − wt, wt ≥ 0, yt ≥ 0.

Since the last but one inequality is redundant, it will be ignored here. By substituting

yt = θte
−gt, wt =

[
(δz − δx) θt − θ̇

]
e−gt

we get the system in θt

θ̇t ≤ − 1

hρ

θ̇t ≤ −θt
θt ≥ 0

A function θt satisfying the first inequality is estimated from above by a decreasing straight
line. Hence it cannot satisfy the third inequality for each t.
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